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SUMMARY

Human spatial ability is modulated by a number of
factors, including age [1–3] and gender [4, 5].
Although a few studies showed that culture influ-
ences cognitive strategies [6–13], the interaction
between these factors has never been globally as-
sessed as this requires testing millions of people of
all ages across many different countries in the world.
Since countries vary in their geographical and cul-
tural properties, we predicted that these variations
give rise to an organized spatial distribution of cogni-
tion at a planetary-wide scale. To test this hypothe-
sis, we developed a mobile-app-based cognitive
task, measuring non-verbal spatial navigation ability
in more than 2.5 million people and sampling popula-
tions in every nation state. We focused on spatial
navigation due to its universal requirement across
cultures. Using a clustering approach, we find that
navigation ability is clustered into five distinct, yet
geographically related, groups of countries. Specif-
ically, the economicwealth of a nation was predictive
of the average navigation ability of its inhabitants,
and gender inequality was predictive of the size of
performance difference between males and females.
Thus, cognitive abilities, at least for spatial naviga-
tion, are clustered according to economic wealth
and gender inequalities globally, which has signifi-
cant implications for cross-cultural studies and
multi-center clinical trials using cognitive testing.

RESULTS AND DISCUSSION

We devised a mobile video game designed to measure human

spatial navigation ability through gameplay—Sea Hero Quest

(SHQ). The game involves navigating a boat in search of sea
creatures in order to photograph them (Figure 1 and Video S1).

It features two main tasks: wayfinding and path integration. In

wayfinding levels, players are initially presented with a map indi-

cating start location and the location of several checkpoints to

find in a set order (Figures 1A–1C and S1). The wayfinding task

requires quite elaborate processing, including interpretation of

a map, planning a multi-stop route, memory of the route, moni-

toring progress along the route and updating of route plan,

and transformation of birds-eye perspective to an egocentric

perspective needed for navigation [14]. In path-integration

levels, participants navigate along a river with bends to find a

flare gun and then choose which three directions is the correct

direction back to the starting point along the Euclidean space

(Figures 1D and S1). During path integration, one integrates

perceived ego motion during travel to update one’s position

and orientation. It is a more basic (and evolutionarily highly

conserved) navigation mechanism, which typically only requires

working memory processes [15, 16]. Together, wayfinding and

path integration capture a wide range of the abilities and

processes that are required for everyday successful navigation.

2,512,123 people between 18 and 99 years old from all 195

countries in the world downloaded and played the game (details

in Table S1 and Figure S2, Part B). 57.6% of the participants

provided demographics of their age, gender, and nationality

(Figure S1). To provide a reliable estimate of spatial navigation

ability, we examined the data only from those subjects who

had completed a minimum of nine levels of the game (see

STAR Methods). This resulted in 558,143 participants from 57

countries that were included in our analysis (Table S1).

To quantify spatial abilities, we defined ‘‘overall performance

corrected’’ (OPcorr), a metric that captures different aspects of

navigation abilities while correcting for video-gaming skills (see

STAR Methods). We further explain how we controlled for other

potential biases, such as the unavailability of SHQ in some

languages, ‘‘fake’’ demographics, and the virtual nature of the

task in STAR Methods and Figure S2.

Across all countries, we observed a similar pattern of decline in

ability with age and a male advantage between 19 and 60 years

old (Figure 2E; see Figure S2, Part G, for plots from example
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Figure 1. Task Design

(A and B) Wayfinding task: a map of the level featuring the ordered set of checkpoints to reach is presented and disappears when the game starts.

(C) Superposition of 1,000 individual trajectories randomly sampled from level 32.

(D) Path-integration task: after navigating the level, participants must shoot a flare back to the starting point.

See also Figure S1.
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nations). This result held true in all tested countries after correct-

ing for differences in age and gender distributions.

We fit a multi-level model for OPcorr, with fixed effects for

age and varying slope for gender, nested within nationality:

OPcorr � age + (gender / nationality). The gender estimate had

the same sign in every country, ranging from 0.43 to 1.49

(M = 0.97, 95% confidence interval [CI] = [0.90, 1.05]). We also

computed Cohen’s d within each country, which ranged from

0.09 to 0.48 (M = 0.29, 95% CI = [0.27, 0.31]; Figure S2,

Part H). Although a number of previous studies have examined

the size of gender differences in cognitive abilities across coun-

tries, the underlying causes of such variation are still debated.

Advocates of the gender-stratification hypothesis argue that

gender differences are more pronounced in countries with less

equity [17, 18]. Data from the Programme for International Stu-

dent Assessment (PISA) that reports on more than 250,000 15-

year-old students from 40 countries show that the gender gap

inmath scores disappears in countries with amore gender-equal

culture [19, 20]. By contrast, other studies link gender differences

more to evolved sex-linked dispositions and environmental

affordances [21]. For example, difference in mental rotation

and line angle judgment performance in more than 200,000

men and women from 53 nations remained even when control-

ling for gender equality [22]. Here, we report a positive correlation

between the magnitude of gender differences measured in the

aforementioned multi-level model and gender inequalities

assessed by the World Economic Forum’s Gender Gap Index

(GGI), which reflects economic and political opportunities,

education, and well-being for women (Figure 2D; r = 0.62,

p < 0.001). We computed a multiple linear regression to predict

gender estimates based on gross domestic product (GDP) and

GGI. Both GGI (t(52) = �2.93, p = 0.005) and GDP per capita

(t(52) = �3.08, p = 0.003) significantly predicted countries’

gender estimates. This suggests that the gender effect is not
2 Current Biology 28, 1–6, August 20, 2018
just related to countries’ wealth, but also to the improvement

of the role of women in society.

The age-related decline in navigation abilities—OPcorr de-

creases in a linear fashion between 19 and 60 years old (Fig-

ure 2E)—held true in all tested countries, with age estimates

ranging from �0.092 to �0.022 per year (M = �0.059, 95%

CI = [�0.063, �0.055]; Figure S2, Part G). Our observed early

decline in performance mirrors the decline in ‘‘fluid intelligence’’

components, which generally occurs in healthy adults [1–3].

Fluid intelligence refers to the capacity to reason independently

of any knowledge from the past and is often linked to working

memory. Our observed performance increment after 70 years

of age was not predicted from the past literature and is consis-

tent with a selection bias that those older participants willing to

participate in online testing are likely to have greater cognitive

skills. At the individual level, performance should continue to

decline, as demonstrated in prior studies of navigation in elderly

humans [23–26]. Increasing data show that the first pathophysi-

ological changes in dementia occur up to 20 years before diag-

nosis. Hence, the data of participants beyond 75 years old, when

we see the change of data trajectory, is not as important as the

data of participants up to 75 years old for future dementia

screening based on the SHQ benchmark [27].

To our knowledge, no prior large-scale studies have quantified

the impact of nationality on a cognitive task. To assess the

impact of nationality on spatial navigation, we fit a multi-level

model for OPcorr, with fixed effects for age and gender

and random effect for nationality: OP corr � age + gender +

(1 / nationality). When we compare our multi-level model with a

single-level model including only age and gender, nationality

has a significant impact on OPcorr (c2(1) = 6413.8, p < 0.001).

The variance partition coefficient (VPC) indicates that 1.7% of

the variance in performance can be attributed to differences

between nationalities. Figure 2B represents countries ranked
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Figure 2. Spatial Ability Distribution across Age, Gender, and Nations

(A and B) Five world clusters of people with similar overall performance corrected for video gaming skill (OPcorr). We used a multilevel model to predict OPcorr

with fixed effect for age and gender and random effect for nationality. Conditional modes (CMs) represent the country-level performance (the lower the better).

(C) Correlation between country performance (CM) and GDP per capita (r = 0.69, p < 0.001).

(D) Correlation between gender estimates and Gender Gap Index (r = 0.62, p < 0.001).

(E) Evolution of OPcorr across age and gender. Data points correspond to the average OPcorr within 3-year windows. Error bars correspond to SEs.

(F) Path-integration accuracy (number of stars) versus path complexity (number of turns). This plot includes participants that completed all five levels (N = 19,038).

For more details, see Figure S2, Part D. Error bars correspond to SEs.
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according to their conditional modes (CMs), that is, the differ-

ence between the global average predicted response in perfor-

mance and the response predicted for a particular country. A

reasonable assumption is that although OPcorr differs around

the world, it follows a relatively smooth uniform distribution

with some countries populations performing well and others

performing less well on average. An alternative possibility is

that countries are grouped by similar cognitive strategies and

that some countries will tend to behave more similarly. Indeed,

country level might not be the optimal scale to work at, since

many social and geographical traits know no borders. To the

best of our knowledge, this hypothesis has never been tested

with data from cognitive tests. To address this, we pooled coun-

tries with similar CMs into k clusters via the optimal 1D k-means

algorithm [28]. We defined the optimal k as the one maximizing

VPC. This was achieved for k = 5 (VPC = 2.6%; Figure 2A and

Figure S2, Part B). Thus, spatial navigation ability appears to

be clustered. Importantly, this clustering is distinct from GDP

per capita and video-gaming skill distributions across countries

(Figure S2, Part B). We downsampled the data to equate video-

gaming skill in our population and found a ranking and clustering

nearly identical to the one with the full dataset (Pearson’s corre-

lation r = 0.99, p < 0.001; Figure S2, Part A and Part C).

The clustering of navigation abilities is not geographically

random. Indeed, countries’ CMs were correlated with GDP per

capita (Figure 2C; Pearson’s correlation r = 0.69, p < 0.001).

This can be explained by different variables highly correlated

with GDP associated with better spatial abilities, such as level

of education [29]—particularly in science [30, 31]—or ability to

travel [32]. Figure S2, Part I, shows a positive correlation

between countries’ CMs and average scores at PISA 2015

(Pearson’s correlation r = 0.73, p < 0.001).

While GDP and GGI have a strong predictive influence on

navigation ability, other country-level factors might influence

navigation ability. Evidence suggests that driving rather than

taking public transport has a positive effect on spatial knowledge

[33, 34]. While this might explain why North Americans and

Australians are particularly successful as populations compared

to equivalent (GDP) European countries that rely more on public

transport [35, 36], it fails to explain why the Nordic countries

perform so well as a group. Many factors are likely to conspire

to drive the superior performance in Nordic countries, and it is

impossible with the current data to precisely determine what

the key factors are. One factor might be cultural activities that

enhance navigation skill. Notably, the Nordic countries share a

culture of participating in a sport related to navigation: orien-

teering. Nordic countries have a tradition of teaching orienteering

in schools [37] and winning medals in the Orienteering World

Championship (OWC). Across the 19 nations represented in

the top 100 OWC ranking, performance in orienteering is signif-

icantly correlated with countries’ CMs in SHQ (Pearson’s corre-

lation r = 0.55, p = 0.01), even after correcting for GDP per capita

(Figure S2N). This preliminary observation shows the potential

for future targeted research to evaluate the impact of cultural

activities on cognitive performance.

Assessing human cognition through video games constitutes

a profound shift in behavioral sciences as it gives access to

very large sample size and to populations difficult to reach

through a lab setting (e.g., from remote countries). When consid-
4 Current Biology 28, 1–6, August 20, 2018
ering such data, it is important to be mindful of selection biases,

such as the requirement to access amobile device to participate.

For example, our observation that performance improves with

age after 75 years old (Figure 2E) is most likely due to such a

bias, as detailed above. Lab-based studies have their own selec-

tion biases, since people must choose to attend to participate

and the testing pool is often very stereotyped [8]. Understanding

these different biases will be crucial in future research. For our

task, it is important to also consider that familiarity with video

games will influence navigation performance, such as via the

expertise involved in controlling virtual movement. As noted

previously, to account for these differences, in all our analyses

we used a corrected performance score (OPcorr) that involved

dividing our navigation performance measure by our measure

of video game skill. To provide further scrutiny, we down-

sampled our participants to a population in which performance

on the first two tutorial levels was equivalent across the popula-

tion, and we found similar results to our main analyses (see

Figure S2B and ‘‘Controlling for familiarity with technology’’ in

the STAR Methods). In future research, it will be important to

explore in greater detail the impact of video-gaming proficiency

on navigation skill in virtual environments and the real world.

Navigation performance in the real world has been found to

correlate with navigation performance in virtual environments,

both for healthy individuals [38, 39] and for patients with early-

stage Alzheimer’s disease [40]. Thus, virtual tests appear to

provide some predictive value for real-world performance.

However, because past studies have used desktop or immersive

displays rather than a mobile version, it remains unclear whether

SHQ performance would be predictive of real-world behavior. To

assess this, we tested participants with SHQ and with a real-

world navigation task in the streets of London (UK) and Paris

(France) [41]. In agreement with previous studies [38, 39], we

found a significant correlation between real-world navigation

performance and performance on SHQ levels that specifically

test navigation [41]. No such correlation was found when perfor-

mance on the tutorial levels was compared to real-world naviga-

tion. Thus, at least for certain real-world contexts, SHQ appears

to predict real-world navigation performance. Further research

exploring the construct validity of SHQ by testing it with other

tests relating to navigation skill will be important to gain a more

precise understanding of the behavior it captures. For instance,

studies examining path-integration ability have shown that

performance decreases with complexity of the path traveled

[42, 43]. We replicated this pattern in every country examined

in our data (Figure 2F and Figure S2, Part D).

Conclusions
Through the use of amobile-app-based approach, we have been

able to reveal for the first time a global benchmark for spatial

navigation. This approach enables predictions to be made about

an individual’s spatial navigation performance based on their

age, gender, and nationality. Specifically, GDP per capita and

GGI of countries are predictive of their inhabitants’ average

spatial navigation performance. Thus, the collected dataset

embodies a unique resource that not only informs our under-

standing of global cognitive abilities, but also provides a

stepping stone toward spatial navigation diagnostics and treat-

ment in patient populations with navigation deficits, such as
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incipient Alzheimer’s pathophysiology [26, 44, 45]. Use of online

technology for the assessment of cognitive abilities has a prom-

ising future in particular with an ever-increasing world population

making use online mobile technology.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Full dataset of 2.5 m participants and subset of

558,143 participants used in this study available

from the Lead Contact.

Participants voluntarily

downloaded and played

the Sea Hero Quest app

N/A

Software and Algorithms

Sea Hero Quest App Store and Google Play https://play.google.com/store/apps/details?id=com.

glitchers.catchhero, https://itunes.apple.com/gb/app/

sea-hero-quest/id1034383306?mt=8

MATLAB – custom scripts available from the

Lead Contact

Version 2016a, Natick, MA https://uk.mathworks.com/products/matlab.html

R – custom scripts available from the

Lead Contact

version 3.3.2 https://cran.r-project.org/

Python – custom scripts available from the

Lead Contact

version 3.5.2 https://www.python.org/downloads/release/python-352/
CONTACT FOR RESOURCE SHARING

Researchers are able to access the full data set via a web application. To obtain access, please contact the Lead Contact, Hugo J.

Spiers (h.spiers@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study has been approved by UCL Ethics Research Committee. The ethics project ID number is CPB/2013/015. Between May

2016 and July 2017, 2,512,123 participants from 255 countries and dependent territories downloaded and completed at least the first

level of the game, see Table S1. Among them, 1,446,954 (57.6%) entered their age, gender and nationality. Examining the age

distribution (Figure S1Q), it is evident that age groups 18 and 99 years old contain more participants than would be predicted

from the distribution. This is likely due to these numbers being the two extremes of the age range. It is likely that players under

the age of 18 may have adopted these age bands. Since it is impossible to separate ‘real’ from ‘fake’ 18 and 99 years old players,

for the current analysis we removed these two age groups from the dataset, leaving 926,456 (36.9%) participants. SHQ level progres-

sion is linear, i.e., one needs to complete level N in order to unlock level N+1 (Figure S1C). Hence, the number of participants

decreases with the progression through the game, as shown in Figures S1T and S1U. To ensure a good tradeoff between sample

size and amount of data per player, we included in the analysis participants who played at least the first 6 wayfinding levels (level

numbers 1, 2, 3, 6, 7 and 8) and the first 2 path integration levels (levels 4 and 9). Level 5 is a creature chase level. This represents

625,626 (24.9%) valid participants. To reduce selection bias and ensure stable cross-country comparisons, we only included partic-

ipants from countries with at least 500 valid participants. As a result of this sampling process, 558,143 (22.2%) participants from 57

countries were included in the analysis. Among them, 312,886 males (age: 34.97 ± 14.39 years old) and 245,257 females (age:

35.98 ± 15.50 years old), cf. Table S1 for country by country information.

METHOD DETAILS

Game Design
To test the global population on their navigation ability we worked with the independent video games design company Glitchers Ltd

to produce a video game using Unity 3D (Unity Technologies, Copenhagen Denmark) for smart phones and tablets (apple and

android devices). We were supported in this design process by staff at Deutsche Telekom (Germany) and Saatchi and Saatchi

London (UK). ‘Sea Hero Quest’ (SHQ) was released on 4 May 2016 on the App Store for iOS and on Google Play for Androids. It

is available in 17 languages: English, French, German, Spanish, Macedonian, Greek, Croatian, Dutch, Albanian, Hungarian, Roma-

nian, Slovak, Czech, Polish, Portuguese, Italian, and Serbian, Figure S1A. The game is manipulated through four controls, designed
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to be intuitive; specifically, these were tap left to turn left, tap right to turn right, swipe up to speed up and swipe down to halt. Along-

side tasks and levels, players were also asked a set of optional questions, which included their age, gender and nationality

(Figure S1).

Tasks
Sea Hero Quest has been designed to reproduce as closely as possible classic navigation tasks from the literature. SHQ wayfinding

task belongs to the path planning category defined in Wiener et al.’s taxonomy of human wayfinding tasks (2009) [14]. We chose this

type of task because, as the authors of this paper put it, ‘‘path planning is probably based on the most elaborate reasoning

processes.’’ SHQ path integration task taps into a different yet classic type of navigation task: uninformed search coupled with

the computation of momentary changes in location and orientation and their summation into a resultant vector allowing the navigator

to come back home [16]. The experimental tasks in SHQ were accessed by unlocking levels sequentially (Figure S1C). These levels

were comprised of 5 themed areas, each containing 15 levels. Through the game, participants followed a sea captain as he tries to

recover his father’s lost memories (Figure S1B). There were three types of task. Wayfinding levels: at the beginning of each level,

participants were given locations to visit from a map. The map disappeared, and they had to navigate a boat through a virtual envi-

ronment to find different checkpoints. After initial levels 1-3 checkpoints are not encountered in the order of passage, but rather have

to be navigated to by returning form one checkpoint to another (Figure S1). Path Integration levels: participants had to find a flare and

shoot it back toward the starting point (Figure S1). Chase levels: participants chased a sea creature to take a picture of it. Chase levels

were purely for motivational purposes and allow participants the capacity to share their game progress via social media in the form of

a ‘photograph’ of the sea creature found. No data was collected from chase levels. Participants are encouraged to collect as many

‘stars’ as possible across the levels: the faster (Wayfinding task) or the more accurate (Path Integration task), the more stars were

obtained. These stars unlocked the capacity to modify the boat in the game.

Data Collection
Within the opening screen and the Journal menu, participants were made aware of the purpose of the game. They were asked

whether they were willing to share their data with us and were guided to where they can opt out. The opt out was always available

in the settings. The website for the game (http://www.seaheroquest.com) was linked to from the About menu and provided full infor-

mation about the study andwhat the data was going to be used for. If the participant agreed, their data (boat trajectory, flare accuracy

and demographics) were anonymously stored in a secure T-Systems server in Germany. The application is managed by T-Systems’

scalable Docker offering called ‘AppAgile’ which is operated out of T-Systems’ datacenter to ensure data integrity and data privacy

according to German data security law. The data are owned byDeutsche Telekom and then licensed to University College London for

analysis. Each participant was identified by a universally unique identifier (user-uuid), a 128-bit number commonly used to identify

information in computer systems. Participant’s sessions were identified by another universally unique identifier (instance-uuid).

Only completed levels were stored and analyzed. During Wayfinding levels, the coordinates of participants’ trajectories were

sampled at Fs = 2 Hz. During Path Integration levels, flare accuracy was quantified in term of stars obtained by the participant. Stars

were awarded based on participant’s choice between 3 proposed directions: 3 stars for the correct answer (their starting point),

2 stars for the second closest direction, and 1 star for the third closest direction.

QUANTIFICATION AND STATISTICAL ANALYSIS

Metrics
To quantify spatial abilities, three measures were computed.

For wayfinding levels, we computed:

Trajectory length in pixels, defined as the Euclidean distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

i = 1 ðxi +1 � xiÞ2 + ðyi +1 � yiÞ2
q

with (xi,yi)i˛[1..N] a N-points

trajectory.

Duration to complete the game in seconds. Since Fs = 2 Hz, Duration = N/2).

While duration is a direct measure of the performance at the task (find all checkpoints in the correct order as fast as possible), it may

be biased toward participants who have the reflex to accelerate. Trajectory length gets around this bias and has been used in clinical

settings to measure error while participants were rewarded for duration [46]. Taken together, these metrics allow to efficiently

characterize participant’s profile: slow/fast and accurate/inaccurate, see Figure S2 Part E and Part F.

For path integration levels, we computed flare accuracy in number of stars: 1, 2 or 3. We considered that video games experience

might bias performance, with players familiar with similar games having an advantage. Therefore we normalized durations and

trajectory lengths by dividing them by the sum of their values at the first two levels, where no sense of direction is needed (Figures

S1F and S1G: goals are visible from the starting point). We found all three measures correlated: Pearson’s correlation between

trajectory length and duration r = 0.75, p < 0.001; trajectory length and path integration accuracy r = �0.21, p < 0.001; duration

and path integration accuracy r = �0.20, p < 0.001. While path integration relied on the integration of perceived ego motion

information over time, wayfinding required the planning of multi-stop routes, memory of survey/map, transformation of survey rep-

resentation into egocentric reference frame. It is therefore not surprising that trajectory lengths and duration - bothwayfinding-related
e2 Current Biology 28, 1–6.e1–e4, August 20, 2018
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metrics - were more correlated with each other than with flare accuracy. We defined an overall performance metric corrected for

video gaming skill (OPcorr) summarizing normalized durations, trajectory lengths and flare accuracies. OPcorr was the 1st compo-

nent of a Principal Component Analysis across the normalized durations and trajectory lengths of levels 6, 7, 8 and the flare accu-

racies of levels 4 and 9 (66.9% of the variance explained). The first unrotated loadings respectively corresponding to (distance,

duration, flare accuracy) are (0.99, 0.12,�0.035), showing that distance is preponderant while flare accuracy is the least contributing

factor to OPcorr. Flare accuracy loading is negative for arbitrary reasons: performance increases with the number of stars, while it

decreases with increasing duration and distance.

Controlling for familiarity with technology
A common potential bias when assessing cognitive abilities with virtual tasks is the influence of participants’ computer experience on

their performance.We controlled that SeaHeroQuest tasks capture participants’ spatial ability and not only their familiarity with tech-

nology through different approaches.

Normalization

We normalized durations and trajectory lengths by dividing them by the sum of their values at the first two levels. The first two levels

only reflect video gaming skill (motor dexterity with the game controls) as no sense of direction is required to complete them, see

Figures S1F and S1G.

Participants with homogeneous video gaming skills

We re-ran the analyses presented in the main body of the manuscript with a subset of participants with similar performance at levels

1 and 2. Performance at levels 1 and 2 was defined as the first component of a Principal Component Analysis across trajectory

lengths and durations for levels 1 and 2 (70.3% of variance explained). We included in this subset all participants within the [0.25

0.75] quantile interval of the distribution of performance at levels 1 and 2 (N = 280,885). As shown in Figure S2B, country ranking

remained very similar to the ranking based on the full dataset (Pearson’s correlation r = 0.99).

Video gaming skill ranking

We also re-ran the analyses presented in the main body of the manuscript based only on performance at levels 1 and 2. Country

ranking based on levels 1 and 2 was correlated to the Overall Performance corrected for video gaming skill (OPcorr) ranking based

on all levels (Pearson’s correlation r = 0.73). However, many differences appeared between rankings, see Figure S2C. For instance,

the United Kingdom jumped from the tenth place in OPcorr ranking to the first place in video gaming skill ranking, and Finland drop-

ped from the first to the eight place.

Geographical clustering

As described in the manuscript, we fit a multi-level model for OPcorr, with fixed effects for age and gender and random effect for

nationality. Nationality levels were either individual countries (granularity = 0, 57 levels) or cluster numbers for country partitions

with 2, 3, 4, 5, 6 or 7 clusters. Variance Partition Coefficient (VPC) represents the percentage of variance explained by the random

effect. Clusters have been computedwith the optimal 1D K-mean algorithm. As stated in themanuscript, when the country clustering

was based on OPcorr, VPC was maximal for 5 clusters (Figure S2D). However, when the country clustering was based on perfor-

mance at level 1 and 2 (reflecting video gaming skill) VPC was maximal for 2 clusters (Figure S2E), and when the country clustering

was based on GDP per capita VPC was maximal without country clustering (i.e., with all 57 levels, see Figure S2F).

Figure S2 Part C represents the geographical clustering of 5 variables: OPcorr, OPcorr computed from participants with similar

video gaming skill, video gaming skill, GDP per capita and Gender Gap Index. Even though we just saw that 5 clusters was only

optimal for OPcorr, we chose to represent each geographical distribution with the same number of clusters to facilitate the compar-

ison with OPcorr. We see that while the 5 clusters of OPcorr and OPcorr computed from participants with similar video gaming skill

remained unchanged (Figures S2H andS2H),many differences appeared between clusters of OPcorr and the other variables (Figures

S2I and S2K). This shows that the geographical clustering presented in Figure 2B is distinct from the distributions of familiarity with

technology or of video gaming skill.

Validation from the spatial cognition literature

Another way to control whether Sea Hero Quest captured spatial ability is to quantify how our data fit with results from the spatial

cognition literature. For instance, path integration models predict error accumulation over traveled distance and increasing turning

angle [42, 43]. We compared this prediction with participants’ performance in the path integration task. We chose path integration

levels with increasing complexity: level 14 (1 turn), level 34 (2 turns), level 54 (3 turns), level 44 (4 turns) and level 74 (five turns),

Figure S2 Part D. Note that here, the number of turns and overall turning angle were highly correlated. To avoid selection bias, we

included participants who completed all five levels. In all tested countries, path integration accuracy decreased with complexity.

This shows that real world path integration models do predict performance in Sea Hero Quest path integration task.

Controlling for fake demographics
Figure S1Q suggests that many participants did not enter their real age, as the lower and upper bound of the age range are clearly

over-represented. For ethical reasons, we set the youngest available age to 18 years-old. This might explain in part the spike at

18 y.o., younger participants being unable to select their real age. To limit the amount of incorrect information, we removed 18

and 99 y.o. from all analyses. Checking the authenticity of other age groups is more difficult. To do so, we investigated the coherence

of age and gender distributions in different clusters of performance. We projected each participant in a 2-dimensional space repre-

senting the first PCA component of normalized duration and trajectory length (Figure S2 Part 5). We fitted to this cloud of points a
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Gaussian Mixture Model (GMM) with 4 bivariate normal components (2D Gaussians). We tried different numbers of components but

the structure of themodel remained similar, i.e., the center of the Gaussians aligned on the space diagonal. We assigned each partic-

ipant to exactly one cluster (hard clustering) based on a cluster membership score. Each cluster membership scores is the estimated

posterior probability that the data point came from the corresponding Gaussian. Each participant is assigned to the Gaussian

corresponding to the highest posterior probability. In Figure S2 Part E, the blue cluster is closest to the space origin, hence composed

of the most efficient participants. The further away from the origin, the less efficient. For each cluster, we computed the age and

gender distribution of their participants. The mean age increases when performance decreases, in accordance with Figure 1E.

We performed the exact same analysis only with older participants: if younger participants pretended to be older (likely more than

90 years old) we should see anomalous age distribution, with very old participants clearly over-performing. This analysis is repre-

sented in Figure S2 Part F, where a GMM is fitted on 8,653 participants above 70 y.o. Looking at the blue cluster, representing

the most efficient older participants, we see that its distributions of age and gender do not particularly show spikes above 90 y.o.,

suggesting that most entered ages are real. Age distributions have similar shapes for males and females, which suggests that gender

information is mostly reliable. Country information is more difficult to validate, this issue is not addressed in this manuscript.

Controlling for language availability
Wedesigned very intuitive tasks and game controls to enable anyone to play, evenwithout understanding the few textual information.

To evaluate the influence of language on performance, we defined L as a coding variable for the existence of SeaHero Quest in one of

the official languages of the countries: Li = 1 if SHQ is translated in language of country i, Li = 0 otherwise. We fitted a logistic binomial

model of L as a function of countries’ CM, and found no significant effect (t(55) = �1.01, p = 0.31).

DATA AND SOFTWARE AVAILABILITY

Researchers are able to access the full data set via a web application. To obtain access, please contact the Lead Contact, Hugo J.

Spiers (h.spiers@ucl.ac.uk). Analyses and figures were made using Python, JavaScript, R, and MATLAB. Scripts are available from

the Lead Contact upon request.

Gross Domestic Product per Capita information were provided by the World Bank in 2015 (https://data.worldbank.org).

Gender Gap Index information were provided by the World Economic Forum in 2015 [47] (http://www3.weforum.org/docs/

GGGR2015/cover.pdf).

Programme for International Student Assessment scores were provided by the Organization for Economic Co-operation and

Development (OECD) in 2015 [48] (https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf). Orienteering championships scores

were provided by the International Orienteering Federation in 2017 (http://ranking.orienteering.org).
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