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ABSTRACT

Classic models of visual attention dramatically fail at pre-
dicting eye positions on visual scenes involving faces. While
some recent models combine faces with low-level features,
none of them consider sound as an input. Yet it is crucial in
conversation or meeting scenes. In this paper, we describe
and refine an audiovisual saliency model for conversation
scenes. This model includes a speaker diarization algorithm
which automatically modulates the saliency of conversation
partners’ faces and bodies according to their speaking-or-not
status. To merge our different features into a master saliency
map, we use an efficient statistical method (Lasso) allowing
a straightforward interpretation of feature relevance. To train
and evaluate our model, we run an eye tracking experiment
on a publicly available meeting videobase. We show that
increasing the saliency of speakers’ faces (but not bodies)
greatly improves the predictions of our model, compared to
previous ones giving an equal and constant weight to each
conversation partner.

Index Terms— saliency model, audiovisual, face, eye
movements, conversations

1. INTRODUCTION

Visual attention models emphasize the regions of a visual
scene most likely to attract the gaze of observers. Applica-
tions of these models are numerous, not only for cognitive
sciences and neurosciences, but also for multimedia tech-
nologies, like video processing for multimedia delivery, re-
targeting or image quality assessment [1]. In the last decades,
many different models have been proposed [2], most of them
relying on the Feature Integration Theory [3]. Such models
split an input visual stimulus into several feature maps like
luminance, contrast, orientation, color and motion, at dif-
ferent scales. These feature maps are then normalized and
merged into a master saliency map to emphasize the most
salient regions. The efficiency of these models is tested by
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comparing their outputs to the eye positions of several ob-
servers recorded during eye-tracking experiments. Although
reliable with many stimuli, most attention models do not
consider the social nature of perception, and dramatically fail
for visual scenes involving faces [4, 5]. Quite recently, vi-
sual saliency models combining faces with classic low-level
features have been developed and significantly outperformed
previous ones [6, 7].
All these attention models are ”silent”: none of them consider
sound as an input, yet ubiquitous in dynamic natural scenes.
In previous studies, we showed that soundtracks significantly
impacts on gaze behavior [8], and particularly when view-
ing conversation scenes [9]. We showed that if participants
always look more at talking faces, hearing the original sound-
track makes them follow the speech turn-taking even more
closely [5]. Based on these results, we proposed an audiovi-
sual saliency model including a speaker diarization algorithm
able to automatically spot ”who speaks when” [10]. This
algorithm allowed us to modulate the saliency weight of each
conversation partner according to their speaking-or-not sta-
tus.
The contribution of this paper is two-fold. Firstly, we refine
our audiovisual saliency model by quantifying the relative
saliency of conversation partners’ faces and bodies. Secondly,
we use an efficient statistical method (Lasso) to estimate the
weights of the different feature maps to be merged into the
master saliency map. This method, while widespread for
model selection in genetics, has never been used for attention
modeling. To meet these goals, we run a new eye-tracking
experiment on a publicly available meeting videobase.

2. AUDIOVISUAL SALIENCY MODEL

Our model follows the classic layout of the models inspired
by the Feature Integration Theory [3]. It splits each frame
in different feature maps, before merging them into a mas-
ter saliency map (Figure 1). The different feature maps of
the model have been fully described in [10]. In this section
the latter are rapidly recalled, and a new statistical method to
merge them into a master saliency map is presented.
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Fig. 1. Block diagram of our audiovisual saliency model. Center Bias, Static and Dynamic Saliency, Speakers and Addresses
(Faces or Bodies) maps are weighted with the βLasso estimated weights, and merged into the audiovisual Master Saliency map.

2.1. Features of the Model

For each frame are computed:

• Static and Dynamic Saliency maps, from a classic spa-
tiotemporal saliency model [11]. The static map empha-
sizes for each frame the spatial regions that differ from
their context in terms of luminance, orientation and spa-
tial frequency. The dynamic map extracted objects’ rela-
tive motion, with a preprocessing stage consisting in back-
ground motion compensation (for the videos where cam-
era is moving).

• Center Bias map. As in [5,12], the center bias is modeled
by a time-independent bi-dimensional Gaussian function
centered at the screen center. Indeed, numerous eye-
tracking studies reported that subjects tend to gaze more
at the center of the image [13].

• Face and Body maps. The face and the body of each con-
versation partner are marked by a rectangle mask. A body
mask contains the whole conversation partner excluding
his face. The coordinates of each mask were dynami-
cally defined for each frame using Sensarea software [14].
We visually checked the efficiency of the segmentation.
While oro-facial information is obviously mandatory to
understand one’s speech, body language and gestures also
are crucial [15]. Here, we aim at quantifying how these
two features attract observers’ gaze.

2.2. Fusion

Merging feature maps has always been a challenge, as they
present different range and distribution [16]. Many different
techniques have been used, from the simple average to the
most complex machine learning techniques [17]. Here we
propose a weighted linear combination of the feature maps.
At each frame, the weight of each normalized feature is es-
timated from eye-tracking data with an efficient statistical
method: Least Absolute Shrinkage and Selection Opera-
tor (Lasso) [18]. While widespread for model selection in
genetics, this method has never been used for attention mod-
eling. The Lasso is a regularized version of the Least Square
method. Given an eye position map Y obtained through an
eye-tracking experiment with N participants, the weights β
of the p features X are estimated via :

βLasso = argmin
β


N∑
i=1

(Yi −
p∑

j=1

βjXij)
2

 with
p∑

j=1

|βj | ≤ λ

with λ a penalization constant scaling down the number of
parameters. The optimal λ is the one leading to the model
with the smallest Bayesian Information Criterion (BIC) [19].
The Matlab toolbox ”Sparse Statistical Modeling” gives an
implementation of this algorithm [20]. For each frame, the
best features to explain the experimental eye position map
are the ones with the highest weight. The Lasso is related
to the Expectation-Maximization (EM) algorithm, a popular
statistical method recently applied to model eye positions on
static [12, 21, 22] and dynamic [5] scenes. The major advan-
tage of the Lasso is the sparsity imposed by the penalization
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constant, while the EM deals with all the parameters given as
inputs, and runs the risk of overfitting.

2.3. Speaker Diarization

As shown in [5], the speakers are more likely to attract the
attention than the other conversation partners. Therefore, it
makes sense to give to Face and Body maps different weights
according to their talking-or-not status. Speaker diarization
algorithms answer to the ”Who speaks when?” question.
They allow to automatically distinguish a speaking from a
silent conversation partner, and thus to adapt the weights of
the corresponding Face and Body maps. The algorithm we
use relies on both the visual and the auditory signals and com-
prises three stages : (1) Voice Activity Detection, (2) Speaker
Temporal Clustering and (3) Speaker Spatial Labelling. More
details can be found in [10].

Let’s consider a conversation scene with different speak-
ers. Once every conversation partner’s speech periods have
been labelled, we average the Face and Body map weights
over their corresponding speaking and silent time periods,
leading to ”Speakers” (βS) and ”Addressees” (βA) weights.

3. MODEL TRAINING AND EVALUATION

To train and evaluate our model, we ran an eye-tracking ex-
periment on a publicly available video base.

3.1. Eye-tracking Experiment

Stimuli
We used the AMI Meeting Corpus [23], comprising 100+
hours of meetings between four colleagues. We chose 3 dif-
ferent meetings ((IN1008, IN1012 and IN1014) that we split
into 15 videos (5 per meeting). Each video lasts between 20
and 80 seconds. Since the meetings were shot from different
angles, we put side-by-side the four conversation partners,
as shown at the top of Figure 1. The resolution is 1232 ×
504 pixels (43.4 × 15.5 degrees), 25 fps. Dialogues are in
English, sampled at 48 kHz.

Participants & Apparatus
40 participants took part in the experiment: 28 men and 12
women, from 22 to 36 years old. Participants were not aware
of the purpose of the experiment and gave their informed
consent to participate. This study was approved by the local
ethics committee. Eye movements were recorded using an
eye-tracker (Eyelink 1000, SR Research) with a sampling rate
of 1000 Hz. We recorded the eye positions of the dominant
eye in pupil / corneal-reflection tracking mode.

Procedure
Each video has been seen in the Visual condition (no sound-

track) and in the AudioVisual condition (original speech
soundtrack) by 20 different participants. Each experiment
was preceded by a calibration procedure, during which par-
ticipants focused their gaze on nine separate targets in a 3 ×
3 grid that occupied the entire display. A drift correction was
carried out between each video, and a new calibration proce-
dure was performed if the drift error was above 0.5 degree.
To avoid any order effect, videos were randomly displayed.

3.2. Training

The weights of each feature map have been estimated for
each frame in each experimental condition (Visual or Audio-
Visual) with the Lasso algorithm. To compare the attractive
power of Body vs. Face masks, we ran the Lasso twice: once
with all the features described section 2.1 (Static Saliency,
Dynamic Saliency, Center Bias, Face and Body maps), and
once without the Body maps. The results are shown on the
left side of Figure 2. We see that despite their small size,
Faces are by far the most important feature, more than three
times more important than Bodies. Center Bias, Static and
Dynamic Saliency, are barely significant. On the right side of
Figure 2, we averaged the Body and Face weights of each
conversation partner over their speaking and silent periods
of time spotted by the speaker diarization algorithm. The
weights of speaking faces are significantly greater than the
weights of silent faces, particularly in the AudioVisual Con-
dition. These results are in line with those presented in [5]
with the Expectation-Maximisation method.

3.3. Evaluation

Here we compare the ability of five different master saliency
maps to predict observers’ eye positions recorded in Audio-
Visual condition. The models differ in terms of features used
and of fusion mode.
1. Static and Dynamic Saliency, Center Bias, Speakers’

Face, Addressees’ Face, weighted with the Lasso algo-
rithm (upper part of Figure 2).

2. Static and Dynamic Saliency, Center Bias, Speakers’ Face
and Body, Addressees’ Face and Body, weighted with the
Lasso algorithm (lower part of Figure 2).

3. Static and Dynamic Saliency, Center Bias and Faces
(equal and constant weight for every face), weighted with
the Lasso algorithm (upper left part of Figure 2).

4. Simple average of Static and Dynamic Saliency, Center
Bias and Faces.

5. Static and Dynamic Saliency only, combined as described
in [11].

Not to evaluate the saliency maps with the same eye positions
as the ones we used to estimate their feature weights, we
followed a ”leave-one-out” approach. More precisely, the
weights used to train the model for a given video originate
from the average over the weights of every video but the one
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Fig. 2. Training with eye positions recorded in Visual and Au-
dioVisual conditions. (a) Mean values of Lasso weights for
Static and Dynamic Saliency, Centre Bias, Bodies and Faces
masks. (b) Contributions of the speakers (S) and addressees
(A) to the Bodies and Faces features in panel (a). (c and d)
Idem, without the Body feature. Weights are averaged over
every frame of each video, and over every video. Error bars
correspond to standard errors.

being processed.
We jointly used the Normalized Scanpath Saliency (NSS)
[24] and the Kullback-Leibler divergence (DKL), two met-
rics widely used for saliency model ranking [25]. The greater
the NSS and the lower the DKL, the better the model. The
results shown in Figure 3 are consistent: when the NSS of a
model is high, its DKL is low. We performed two ANOVAs
with the different models as within-subject factors on NSS
and DKL mean values. There is a main effect of the model
type on the NSS (F(4,56) = 453.7, p < .001) and DKL
(F(4,56) = 78.9, p < .001) values. The best model is the first
one, giving different weights to speakers and addresses’ faces
(Bonferoni post-hoc comparisons, all p < .001). Unexpect-
edly, model 2 which also considers conversation partners’
body is less efficient, with a NSS close to the one of model 3
(p = .2), and a DKL close to the one of model 4 (p = 1). Not
separating speakers from addressees (models 3 and 4) also
decreases model performances. As expected, not considering
faces at all (model 5) leads to the worst performances. Except
for the DKL values of models 3 and 5 (p = .15), all the
differences presented Figure 3 are significant (all p < .001).

Fig. 3. Evaluation - Divergence of Kullback-Leibler (DKL)
and Normalized Scanpath Saliency (NSS) for the different
models described Section 3.3. For the models 1, 2 and 3,
the feature weights have been estimated with the Lasso algo-
rithm applied to the eye positions recorded in the AudioVisual
condition of the experiment described Section 3.1.

4. CONCLUSIONS

In this paper, we used and refined an efficient audiovisual
saliency model for conversation scenes. The model relies on a
speaker diarization algorithm able to automatically spot ”who
speaks when”. It uses a statistical method (Lasso) to estimate
the weights of different elementary features before merging
them into a master saliency map. While many efficient but
opaque machine learning techniques have been used for this
purpose, the Lasso allows a straightforward interpretation of
feature relevance. We ran an eye tracking experiment on a
publicly available meeting videobase, the AMI Meeting Cor-
pus. We used this new dataset to train and evaluate our model.
We showed that giving a greater weight to speakers’ face sig-
nificantly increases the model efficiency, but considering the
whole body degrades it. This result could be imputed to the
large surface of the body masks compared to its relatively low
saliency. To test this hypothesis, it could be interesting to in-
dependently quantify the contribution of smaller parts of the
body, like the hands or the torso.
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