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Visual Attention Saccadic Models Learn to Emulate
Gaze Patterns From Childhood to Adulthood

Olivier Le Meur, Antoine Coutrot, Zhi Liu, Senior Member, IEEE, Pia Rämä, Adrien Le Roch, and Andrea Helo

Abstract— How people look at visual information reveals
fundamental information about themselves, their interests and
their state of mind. While previous visual attention models
output static 2D saliency maps, saccadic models aim to predict
not only where observers look at but also how they move their
eyes to explore the scene. In this paper, we demonstrate that
saccadic models are a flexible framework that can be tailored to
emulate observer’s viewing tendencies. More specifically, we use
fixation data from 101 observers split into five age groups (adults,
8–10 y.o., 6–8 y.o., 4–6 y.o., and 2 y.o.) to train our saccadic
model for different stages of the development of human visual
system. We show that the joint distribution of saccade amplitude
and orientation is a visual signature specific to each age group,
and can be used to generate age-dependent scan paths. Our
age-dependent saccadic model does not only output human-like,
age-specific visual scan paths, but also significantly outperforms
other state-of-the-art saliency models. We demonstrate that the
computational modeling of visual attention, through the use of
saccadic model, can be efficiently adapted to emulate the gaze
behavior of a specific group of observers.

Index Terms— Saccadic model, scanpaths, saliency, develop-
ment, age.

I. INTRODUCTION

OCULUS animi index is an old Latin proverb that
could be translated as the eyes reflect our thoughts.

Eye-movements, revealing how and where observers look
within a scene, are mainly composed of fixations and
saccades. Fixations aim to bring areas of interest onto the
fovea where the visual acuity is maximum. Saccades are
ballistic changes in eye position, allowing to jump from one
position to another. Visual information extraction essentially
takes place during the fixation period. The sequence of
fixations and saccades an observer performs to sample the
visual environment is called a visual scanpath.
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Thanks to the advent of modern eye-trackers, allowing us
to capture gaze with a high spatial and temporal resolution,
a large amount of eye tracking data can be collected with
a relative simplicity. Given that the execution of eye move-
ments is the result of a complex interaction between various
cognitive processes, mining eye tracking data may provide
many indications on our personality, on our mood, and more
generally speaking, on the cognitive states of our mind. The
way we explore our environment, the way we moves our eyes
from one location to another in order to inspect it accurately,
may reveal information about our cognitive state. For instance,
Henderson et al. [1] inferred the task the participants are
engaged in by analyzing eye-movements. Coutrot et al. used
Hidden Markov Models to model scanpaths and use them
to infer the task at hand or the presence of soundtrack [2].
Wang et al. [3] combined eye tracking with computational
attention models in order to screen for mental diseases such
as autism spectrum disorder (see [4], [5]). Tavakoli et al. [6]
investigated the influence of eye-movement-based features to
determine the valence of images.

Predicting where we look within a scene is of particular rele-
vance for many computer vision applications such as computer
graphics [7], quality assessment [8], [9] and compression [10]
to name a few.

There exist many computational models of overt visual
attention [11]. Saliency models aim to predict the salience
of a visual scene. They are based on low-level visual fea-
tures including color, intensity, and orientation. They process
these visual features at several scales using center-surround
differences. This process filters out redundant information
and outputs feature maps, one per channel. A final saliency
map is obtained by combining these feature maps. In contrast
with saliency models, saccadic models intend to predict the
sequence of eye fixations, i.e. the fashion an observer deploys
his/her gaze while viewing a stimulus on screen. Rather than
computing an unique saliency map, saccadic models compute
visual scanpaths from which scanpath-based saliency maps
can be computed. As discussed later in this paper, saccadic
models offer many advantages over saliency models. The
most important one is the ability to tailor the saccadic model
to a particular context, such as a particular type of scene,
a particular population or to a particular task at hand [12].

Modelling the human visual attention is a complex task,
because of the number of underlying biological mechanisms
involved in the visual perception. One of the major diffi-
culties is the high variability in eye-movements. This dis-
persion is due to many factors, which could be related for
instance to the task at hand [13], the cultural heritage [14],
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the gender [15], [16] and observers’ age [17]. The last factor,
i.e. the age of observer, is the central concern of this paper.

In this paper, we designed an age-dependent saccadic model
in order to reproduce the gaze behavior of a certain target
age group. Recent studies give evidence that there exist age-
related differences in viewing patterns while free-viewing
scene perception [18], [19]. Fixation durations decrease and
saccade amplitudes increase with age. These changes may
be explained both by eye movement behavior and cognitive
processing. Like our skin, bones, and hair, the eyes undergo a
metamorphosis as we grow older. Movement of the eye globe
is accomplished by a system of extraocular muscles. Because
of aging, the physical traits of these muscles evolve over time,
leading to different responses. Another factor is related to
cognition which also changes with age. Our perception of the
world is indeed a constructive process which heavily relies
on prior knowledge and past experiences. These top-down
information influence the way we look within visual scene.

Being able to reproduce age-dependent visual deployment
may have significant implications on computer vision appli-
cations, such as retargeting [20], video compression [10].
In addition, the proposed age-dependent saccadic model relies
on a reliable scanpath signature shared within each age group.
This signature is used to emulate the gaze behavior of a
specific age group of observers. Understanding how this
signature evolves with age could help to design new assisting
applications for visually impaired people (e.g. people suffering
from ARMD (Age-Related Macular Degenerescence)).

This paper is organized as follows. Section II presents sac-
cadic models and focuses more specifically on the modelling
framework proposed in [21] and [22]. We will also stress how
we can tailor this saccadic model for different age groups.
Section III presents the eye tracking dataset that is used
to determine the scanpath-based signature [18]. Section IV
presents the age-dependent saccadic model and section V
evaluates its performances. In Section VI, we discuss the
results and draw some conclusions.

II. SACCADIC MODEL

A. Definition

Saccadic models aim to generate plausible visual scan-
paths, i.e. the actual sequence of fixations and saccades an
observer would do while viewing stimuli onscreen. By the
term plausible, we mean that the predicted scanpaths should
be as similar as possible to human scanpaths. They should
exhibit similar characteristics, such as the same distributions
of saccade amplitudes and saccade orientations. In summary,
a saccadic model must predict how observer moves his gaze,
but also where the observer looks.

Most existing saccadic models assume that gaze shifts
follow a Markov process, meaning that the next gaze loca-
tion depends only on the current one. In 2000, Brockmann
and Geisel [23] generated a sequence of fixation points by
considering a stochastic jump process, in which the tran-
sition probability density of shifting the gaze from one
fixation to another depends on the product of a random
salience field and the amplitude of the generated saccade.

Boccignone and Ferraro [24] extended Brockmann’s work, and
modeled eye gaze shifts by using Lévy flights constrained
by a bottom-up saliency map. Wang et al. [25] used the
principle of information maximization to generate scanpaths
on natural images. One interesting point is that they learned
the distribution of saccade amplitudes from their own eye
movements dataset in order to constrain the selection of the
next fixation point. Liu et al. [26] went further by using a
Hidden Markov Model (HMM) with a Bag-of-Visual-Words
descriptor of image regions to account for semantic content.
Tavakoli et al. [27] also incorporated visual working memory
and a Gaussian mixture to estimate the distribution of saccade
amplitudes. Engbertet al. [28] proposed the SceneWalk model
of scanpath generation based on two independent processing
streams for excitatory and inhibitory pathways. Both are
represented by topographic maps: the former represents the
foveated saliency map whereas the latter is used for inhibitory
tagging. These two maps for attention and inhibitory tagging
are then combined. The next fixation point is selected thanks to
a stochastic selection [28]. Le Meur and Liu [21] and Le Meur
and Coutrot [22] proposed a model of scanpath generation
by considering spatially-variant and context-dependent joint
distribution of saccade amplitudes and orientations. The next
subsection underlines its main components.

B. Le Meur’s Saccadic Model

Predicted scanpaths result from the combination of three
components, namely a bottom-up saliency map, viewing biases
and memory mechanism, as illustrated by Fig. 2. In the
following, we summarize the main operations involved in the
method proposed in [21] and [22].

Let I : � ⊂ R2 �→ Rm (m = 3 for RGB image) an
input image and xt−1 a fixation point at time t − 1. The next
fixation point xt is determined by sampling the 2D discrete
conditional probability p (x |xt−1) which indicates, for each
location of the definition domain �, the transition probability
between the previous fixation and the current location x . The
conditional probability p (x |xt−1) is composed of three terms
as described in Eq. 1:

p (x |xt−1) ∝ pBU (x)pM(x, t|T )pB(d(x, xt−1), φ(x, xt−1))

(1)

where,

• pBU (x) represents the input 2D bottom-up saliency map.
This saliency map is computed by a traditional saliency
model, or by combining the results of several saliency
models [29].

• pM (x, t|T ) represents the memory state of the location
x at time t , according to the T past fixations. This
time-dependent term simulates the inhibition of return
and indicates the probability to refixate a given location.
As described in [21], pM(x, t|T ) is composed of two
operations: one for inhibiting the current attended location
in order to favor the scene exploration. At the opposite,
the second term allows to recover the initial salience of
the previous attended locations, favoring the re-fixation.
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Fig. 1. (a) Original stimulus; (b) and (c) represent fixation maps (red crosses indicate fixation) for 2 year-old and adult group, respectively; (d) and (e)
represent the actual saliency maps for 2 year-old and adults groups, respectively.

An attended location requires T fixations before recover-
ing the integrality of its salience.

• pB(d, φ) represents the probability to observe a
saccade of amplitude d and orientation φ. The saccade
amplitude d , expressed in degree of visual angle, is the
Euclidean distance between two consecutive fixation
points xt and xt−1. The saccade orientation φ is the angle,
expressed in degree, between these two consecutive
fixation points. The joint probability of saccade
amplitudes and orientations is learned from actual eye
tracking data, by using kernel density estimation [30].
This representation implicitly encompasses gaze biases,
which reflect the main tendencies of observers looking
at well-defined stimuli. The joint probability is also
content-dependent [22], indicating that our visual strategy
depends on the stimulus displayed on screen (see also
supplementary material).1 By choosing the most relevant
joint probability with respect to the displayed scene,
the saccadic model can be fine-tuned for reproducing
a specific visual behavior. This is one major difference
between saccadic model and traditional saliency models.
In Section III, we will see that the joint distribution of
saccade amplitudes and orientations is a good candidate
for representing the differences in visual deployment
that exist between young children and adults.

When the three terms of the conditional probability
p (x |xt−1) are known for all sites of the definition domain �,
the next fixation point can be inferred. One obvious solution
would be to consider the maximum a posteriori solution,
also called the Bayesian ideal searcher in [31]. However,
this solution is deterministic and fails to represent uncertainty
about visual perception and perceptual interpretations [32].
Another way to model trial-to-trial variability, or in our context
the dispersion between observers, is to assume a stochastic
rule for choosing the next fixation point. In [21], a set of Nc

samples is drawn from the conditional probability p (x |xt−1).
The next fixation point is selected as being the sample hav-
ing the highest bottom-up salience. This implementation is
close to the one proposed in [28]. This form of stochastic
selection is also known as Luce’s choice rule [33]. It is
important to underline that the number of samples drawn from
the conditional probability controls the amount of dispersion
between observers. A high number of samples (or candidates)
would reduce the dispersion between observers. In the extreme
case, where Nc tends to infinity, the inference of the next

1Available on Le Meur’s webpage

fixation point becomes deterministic and strongly similar to
the Bayesian ideal searcher. At the opposite, when Nc is
equal to 1, the amount of randomness is maximal providing
the highest dispersion between observers.

This sampling strategy is obviously sub-optimal because
the next fixation point is not necessarily the point having the
highest probability to be attended. However, this strategy akin
to probability matching [34] has been reported to be used by
humans in a variety of cognitive tasks [35], [36].

In the next section, we show how this framework is able
to capture and implement the specificities of gaze behaviour
across the development of the visual system.

III. EYE MOVEMENTS FROM CHILDHOOD TO ADULTHOOD

In this section, we analyzed an eye tracking data collected
from observers of a wide range of ages. The main purpose
was to investigate whether the joint distribution of saccade
orientations and amplitudes learned from this raw eye tracking
data is able to capture the gaze biases of different age groups.
We already know that aging has an impact on the way we
deploy our visual attention [37], [38]. If we succeed in quanti-
tatively measuring the influence of development, the saccadic
model described in the previous section could be tuned to
replicate the gaze behavior of a specific age group.

A. Maturation of Eye-Movements

The visual system at birth is limited but develops rapidly
during the first years of life and continues to improve through
adolescence. Helo et al. [18] give evidence of age-related
differences in viewing patterns during free-viewing natural
scene perception. Fixation durations decrease with age while
saccades turn out to be shorter when comparing children with
adults. Materials and methods of this eye-tracking experiment
are briefly summarized below.

1) Participants: A total of 101 subjects participated in
the experiments, including 23 adults and 78 children. These
subjects were divided into 5 groups: 2 year-old group,
4-6 year-old group, 6-8 year-old group, 8-10 year-old group
and adults group. Participants were instructed to explore the
images. The 4-10 year-old and the adults were instructed to
perform a recognition test to determine whether an image
segment presented at the center of the screen was part of
the previous stimulus (more details on experimental design
is available in [18]).

2) Stimuli: Thirty color pictures taken from children books,
as illustrated in Fig. 1 (a), are displayed for 10s. A drift
correction is performed before each stimulus. The viewing
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Fig. 2. Flow chart of the saccadic model proposed in [21] and [22]. The
model takes as input: the original image as well as prior information related
to the type of the scene, the age of observers, etc. It outputs a set of visual
scanpaths.

Fig. 3. Distribution of visual fixations in function of the distance from
the center and distributed into 10 crowns, numbered from 1 to 10 (1 is
the centered crown). The y-axis represents a percentage of visual fixations.
(a) 2 year-old. (b) Adults.

distance is 60 cm. One degree of visual angle represents
28 pixels. For all the results reported in this paper, the first
fixation has been removed.

3) Saliency Map and Center Bias: Fig. 1 (b) to (e) illustrates
fixation maps and saliency maps computed from eye tracking
data of 2 year-old and adults groups. The saliency map is
classically computed by convolving actual eye positions with
a 2D Gaussian function which approximates the central part
of the retina, i.e. the fovea [39]. The standard deviation is
set to 28 pixels representing one degree of visual angle [40].
We observed that adults tend to explore much more the visual
scene than 2 year-old children. In addition, the center bias
is more important for the 2 year-old group than for the
adult group. We quantify this trend by computing the ratio
of fixations falling within centered crowns. For this purpose,
a set of 10 concentric circles is used. The radius of each circle
represents 10%, 20%,...,90%, 100% of the distance between
the picture center and its top-left corner. The ratio of fixations
falling within each crown (difference between two concentric
successive circles) to the overall number of fixations is cal-
culated. Fig. 3 plots these distributions for the 2 year-old and
adults groups. The cumulative percentage of the last 4 crowns
indicates that the center bias is more significant for young
children than adults (26% of adults’ fixations fall within these
crowns, compared to only 18% for 2 year-old children). More
results are presented in supplementary materials.

B. Joint Distribution of Saccade Orientations and Amplitudes

Following the method proposed in [21], we estimate
the joint probability distribution of saccade amplitudes and
orientations pB(d, φ) for each age group. This nonparametric

distribution is obtained by using a 2D Gaussian kernel
density estimation. The two bandwidth parameters are chosen
optimally based on the linear diffusion method proposed
in [41]. The joint probability pB(d, φ) is given by:

pB(d, φ) = 1

n

∑

i

Kh(d − di , φ − φi ) (2)

where di and φi are the distance and the angle between each
pair of successive fixations respectively. n is the total number
of samples and Kh is the two-dimensional Gaussian kernel.
Fig. 4 shows the joint probability distributions of saccade
amplitudes and orientations (bottom row) in a polar plot
representation. Radial position indicates saccadic amplitudes
expressed in degree of visual angle. The top row of Fig. 4
shows the marginal probability distributions of saccade
amplitudes.

A number of observations can be made: first, eye-movement
patterns change with age. Saccade amplitudes are shorter in
the 2 year-old group than in adults group. Saccade amplitudes
increase with age. This first observation is consistent with
the ones made in [18]. Regarding the saccade orientations,
we observe a strong horizontal bias in the adult group which is
also consistent with previous studies [42], [43]. This horizontal
bias can be explained by several factors, such as biome-
chanical factors, physiological factors and the layout of our
natural environment [44]. Regarding biomechanical factors,
Van Renswoude et al. [44] stress the point that horizontal
saccades require only the use of one pair of muscles whereas
saccades in the other directions requires more than one pair of
muscles [45]. This horizontal bias is less obvious for young
children, even though it may exist [44]. Fig. 4 (bottom row)
also shows that the distribution shape of the 2 year-old
group (a) is much more isotropic than the adults’ one (d), but
with a marked tendency for making upward vertical saccades.

A two-sample two-dimensional Kolmogorov-Smirnov
test [46] is performed to test whether the difference between
the joint distributions illustrated in Fig. 4 is statistically
significant. For two given distributions, we randomly draw
5000 samples and test whether both data sets are drawn from
the same distribution. The tests show significant differences
between 2 year-old and 4-6 year-old groups, and between
4-6 year-old and 6-8 year-old groups (all p < .001). There is
no difference between 6-8 year-old and 8-10 year-old groups
(p = 0.2). A significant difference is however observed
between adults and 8-10 year-old groups ( p = 0.0049).
We reduced the within-group variance by increasing the
sample size and merging the 6-8 and 8-10 year-old groups
together. The resulting group is called the 6-10 year-old
group.

In summary, these results suggest that the joint distribution
of saccade amplitudes and orientations is able to grasp gaze
behavior differences across age, as well as to reflect important
features of development on the visual deployment.

C. To What Extent do Saliency Models Predict
Where Infants and Adults Look?

There exist a number of saliency models working
on different modalities, such as images [47]–[49], video
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Fig. 4. Distribution of saccade amplitudes (top row) and polar plots of joint distribution of saccade amplitudes and orientations (bottom row) for different
age groups: (a) 2 year-old group to (d) adult group. The light blue envelope on top-row curves represents the standard error of the mean, amplified by a factor
of 2000. The 6-8 and 8-10 year-old distributions are not displayed for the sake of clarity. They are available in the supplementary materials.

sequences [50], [51], audio-visual video sequences [52] and
compressed domain [51], [53] (see [11] for a taxonomy).
In this study, ten saliency models are tested: BMS [54],
AWS [48], AIM [55], ITTI [47], HOU [56], SUN [57],
IMSIG [58], SIM [59], GBVS [60] and RARE2012 [61].
Performance is evaluated using the following metrics:

• The linear correlation coefficient (CC) is computed
between two saliency maps. A value of 0 means that the
two maps are uncorrelated.

• The similarity (SIM) is calculated based on the normal-
ized probability distributions of the two maps [62]. The
similarity is the sum of the minimum values at each
point in the distributions. SIM=1 means the distributions
are identical whereas SIM=0 means the distributions are
completely opposite.

• The Earth Mover’s Distance (EMD) measures the dis-
tance between two probability distributions by how much
transformation on one distribution would need to undergo
to match another (EMD=0 for identical distributions).

• The metrics called AUC-Judd and AUC-Borji consist
in considering the saliency map as a binary classifier
to separate positive from negative samples at various
thresholds (see [61], [63] for a review). A ROC analysis
is then performed for computing the Area Under Curve: a
score of 1 means that the classification is perfect, whereas
a value of 0.5 is the chance level.

• The normalized scanpath score (NSS) measures the mean
value of the normalized saliency map at fixation loca-
tions [64]. NSS=0 represents the chance level. A high
positive value means that fixations fall within salient parts
of the scene.

These metrics are complementary: the CC metric is used
to compare two saliency maps, SIM and EMD compare
two distributions whereas AUC-Judd, AUC-Borji and NSS
compare a map with a set of fixations. Readers can refer to
[40], [61], and [63] for more details on these metrics.

The performances are given in Table I. The results were
analyzed using a three-way mixed ANOVA design. Age groups
(adults, 6-10 yo, 4-6 yo, or 2 yo) was the between-subjects
variable; type of saliency model (GBVS or RARE2012)2

and type of metric (CC, SIM, EMD, KL, AUC-Judd,
AUC-Borji, or NSS) were the within-subjects variables. The
three-way ANOVA yielded a significant main effect of age
(F(3, 95) = 17.55, p < .001), model (F(1, 95 = 4.87,
p = 0.03) and metric (F(6, 90) = 784.84, p < .001).
The metric × age interaction is significant (F(18, 276) =
8.10, p < .001), as well as the model × metric inter-
action (F(6, 90) = 59.91, p < .001). The model × age
interaction is not significant (F(3, 95) = 2.53, p = 0.062).
Post-hoc Bonferroni comparisons show significant differences
between all age groups ( p < .001), except between adults and
6-10 yo, and between 4-6 yo and 2 yo ( p = 1).

This analysis leads to several observations. First the influ-
ence of bottom-up factors such as saliency in eye movement
behavior is significant for all age groups. This is specifically
the case for GBVS model. Indeed GBVS model significantly
outperforms RARE2012 model (paired t-test, p � 0.01).
According to previous benchmarks of computational models of
saliency [21], [65], this discrepancy in performance between

2We consider only these two models in the analysis because they are used
as input for the saccadic model (see section V)
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TABLE I

PERFORMANCE OF GBVS, RARE2012 MODELS AND SACCADIC MODEL
(USING AN INPUT SALIENCY MAP COMPUTING FROM EITHER

GBVS OR RARE2012). WE REPORT THE PERFORMANCES OF

OUR SACCADIC MODEL FOR AN OPTIMAL Nc VALUE.
THE BEST SCORES ARE IN BOLD. DETAILLED

PERFORMANCES ARE GIVEN IN TABLE II

these two models is unusual. This performance gap might
be explained by two major differences between GBVS and
RARE2012. The central bias, while intrinsically taken into
account by GBVS, is not considered by RARE2012. As illus-
trated by Fig. 5 (a), we can observe black stripes all around
GBVS saliency map, which may significantly improve the
performance of the model [66]. Second, RARE2012 maps
are much more focused than GBVS ones. The less focused
GBVS maps might be an advantage in the context of this study.
Indeed, the stimuli used in this experiments (see Fig. 1) are
very dense, containing several areas of interest. In addition,
except for the 2 year-old kids, all participants performed a
recognition task which might favor scene exploration, and
penalize too clustered saliency maps.

Fig. 5. (a) GBVS (Top left) and RARE2012 (Bottom left) saliency maps for
the original image in Fig. 1 (a). (b) Performance over 10 saliency models in
function of age.

A second observation is related to the influence of salience
in the four age groups. Regarding GBVS and RARE2012 mod-
els, the best match is obtained for the 6-10 year-old group
when considering the CC, SIM and EMD metrics, for both
saliency models. For the other three metrics, i.e. AUC-Judd,
AUC-Borji and NSS, the best scores are obtained for the
4-6 year-old group.

Figure 5 (b) illustrates the average performance of the ten
tested saliency models; each score is obtained by averaging the
ten scores presented in Table I. We were expected to observe
a notable trend towards lower performance with age. Indeed,
some studies such as [18] and [67] suggest that bottom-
up factors decrease when aging while the role of top-down
processes increases. Our results do not exhibit a clear and
significant trend. However, this is not in agreement with [68]
who recently came to the conclusion that saliency models are
better for predicting adult saliency maps than infant saliency
maps. This conclusion may also seem counterintuitive and
does not agree with the aforementionned studies.

IV. AGE-DEPENDENT SACCADIC MODEL

In this section, we tailor Le Meur’s saccadic model to
the different age groups, namely, 2, 4-6, 6-10 year-old and
adults. We perform three modifications to the purpose of
our study. The first modification consists in using a joint
probability density function pB(d, φ) that has been learned
from eye tracking data collected from different age groups,
as presented in section III-B. This prior knowledge represents
the viewing tendencies, expressed in this study in terms
of saccade amplitudes and orientations, which are common
across all observers of a given age. The use of such a prior
is fundamental to constrain how we explore scenes and to
generate saccade amplitudes and orientations that match those
estimated from human eye behavior.

However, rather than using a unique joint distribution
per age group, we use, as suggested in [22], a spatially-
variant joint distribution. The image is then split into a non-
overlapping 3 × 3 grid; for each cell in the grid, the joint
distribution of saccade amplitudes and saccade orientations is
estimated following the procedure detailed in section III-B (the
polar plots of these distributions are given in supplementary
materials). This spatially-variant prior is more appropriate for
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catching important viewing tendencies. One of the most impor-
tant priors is the central bias. Indeed, as illustrated in [22] as
well as in the supplementary materials, saccades located on
the frame corners move the gaze towards the screen’s center.
This reflects our tendency to look near the screen’s center,
irrespective of the visual information at that location.

The second modification is related to the number of
samples, Nc , which is drawn from the conditional probability
p (x |xt−1). As presented in section II, this parameter can be
used to tune the amount of randomness in the selection of the
next fixation point. A low value results in a high dispersion
between observers, and fosters the scene exploration [69].
A high value would reduce the dispersion. In our study,
we evaluate the performance of the saccadic model for
Nc ∈ {1, . . . , 9}.

The third modification concerns the selection of the most
appropriate candidate among the Nc candidates drawn from the
conditional probability p (x |xt−1). In [21], the next fixation
point is selected as being the candidate having the highest
bottom-up salience. This selection rule is modified to take into
account the probability pB(., .), the bottom-up saliency pBU (.)
and the distance d between the candidate and the previous
fixation point. The next fixation point x∗ is then selected as

x∗ = arg max
s∈�

pBU (s) × pB(d(s, xt−1), φ(s, xt−1))

d(s, xt−1)
(3)

where, � is the set of Nc candidates, xt−1 is the previous
fixation point and d is the Euclidean distance between the
candidate s and the previous fixation point. This new rule
allows us to favor the candidates that are close to the previous
fixation point and featured by both a high probability to be
attended and high bottom-up salience.

V. PERFORMANCES

First, we evaluate the extent to which the predicted fixations
fall within salient areas. Second, we test the plausibility of
the generated scanpaths with respect to the actual scanpaths
of the four age groups. Third, we evaluate the benefit to use
dedicated age-dependent distributions of saccade amplitudes
and orientations.

To perform these evaluations, we proceed as follows: for
each image of the dataset and for each age group, we gener-
ate 20 scanpaths, each composed of 15 fixations. The first
fixation is randomly chosen. The input saliency map, i.e.
the term pBU in equation 1, is computed using either the
GBVS or RARE2012 model. These two models are chosen
because of the good tradeoof between simplicity and perfor-
mance [61]. From the generated scanpaths, a saliency map is
computed by following the classical procedure, as described in
section III-A (see [39], [40]). These maps are called scanpath-
based saliency maps.

A. Prediction of Salient Areas

Table I and II present the similarity degree between
scanpath-based saliency map and the ground truth (i.e. either
human saliency map or eye tracking data). Table I provides
the performance of our saccadic model for an optimal value

of Nc . We observe that our model significantly outperforms
RARE2012 model, whatever age groups and metrics.
Compared to GBVS model, our model performs better
according to 4 metrics. A thorough statistical analysis is per-
formed from the detailed scores given in Table II. The results
were analyzed using 2 three-way mixed ANOVA designs.

The first one uses age groups (adults, 6-10 year-old,
4-6 year-old, or 2 year-old) as the between-subjects variable,
type of saliency model (GBVS or GBVS-based saccadic
model) and type of metric (CC, SIM, EMD, AUC-Judd,
AUC-Borji, or NSS) as the within-subjects variables. For each
metric and age group, we used the Nc value that led to
the best result. The three-way ANOVA yielded a significant
main effect of age (F(3, 95) = 15.31, p < .001), model
(F(1, 95) = 8.056, p = 0.006) and metric (F(5, 91) =
110.50, p < .001). The metric × age interaction is sig-
nificant (F(15, 279) = 9.035, p < .001), as well as the
model×metric interaction (F(5, 91) = 52.32, p < .001). The
model × age interaction is not significant (F(3, 95) = 1.25,
p = 0.29). Post-hoc Bonferroni comparisons show significant
differences between all age groups (all p < .001, except
between 2 year-old and 6-10 year-old where p = 0.035),
except between 4-6 year-old and 2 year-old ( p = 0.49).

The second ANOVA analysis uses age groups (adults,
6-10 year-old, 4-6 year-old, or 2 year-old) as the between-
subjects variable, type of saliency model (RARE or RARE-
based saccadic model) and type of metric (CC, SIM, EMD,
AUC-Judd, AUC-Borji, or NSS) as the within-subjects vari-
ables. For each metric and age group, we used the Nc value
that led to the best result. The three-way ANOVA yielded a
significant main effect of age (F(3, 95) = 6.81, p < .001),
model (F(1, 95) = 67.92, p < 0.001) and metric (F(5, 91) =
262.45, p < .001). The metric × age interaction is signifi-
cant (F(15, 279) = 7.43, p < .001), as well as the model ×
metric interaction (F(5, 91) = 96.143, p < .001). The
model × age interaction is not significant (F(3, 95) = 0.62,
p = 0.60). Post-hoc Bonferroni comparisons show significant
differences between adults and 4-6 yo (p < .001), marginal
differences between adults and 2 year-old ( p = 0.086) and
no difference between adults and 6-10 year-old ( p = 1).
There is a significant difference between 6-10 year-old and
4-6 year-old ( p = 0.01) but not between 6-10 year-old and
2 year-old ( p = 0.57). There is no significant difference
between 2 year-old and 4-6 year-old ( p = 1).

In summary, as shown in Table II, the proposed saccadic
model performs better than GBVS and RARE2012 models.
When the input saliency map of the saccadic model is the
saliency map computed by RARE2012, the saccadic model
significantly outperforms RARE2012 for all considered
similarity metrics. These results are given on the right
hand-side of Table II. We draw a similar conclusion for the
CC, EMD and NSS metrics when the GBVS model is used
to compute the input saliency map. Concerning the SIM,
AUC-Judd and AUC-Borji metrics, the performances of the
GBVS-based saccadic model are similar to GBVS model.

The proposed model performs well when Nc is in between
3 and 7, for all age groups. This shows a reasonable flexibility
with the choice of the Nc parameter. As discussed in the next
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TABLE II

PERFORMANCE OF GBVS, RARE2012 MODELS AND SACCADIC MODEL. THE BEST SCORES ARE IN BOLD. A DAGGER, i.e. † , IS ADDED WHEN THERE

IS A STATISTICALLY SIGNIFICANT DIFFERENCE (PAIRED T-TEST, p < 0.05) BETWEEN GBVS (RESP. RARE2012) AND GBVS-BASED SACCADIC

MODEL (RESP. RARE2012-BASED SACCADIC MODEL). THE BULLET, i.e. • , INDICATES THE SCORES THAT ARE NOT STATISTICALLY
SIGNIFICANT: THE PAIRED T-TEST IS PERFORMED IN THIS CASE BETWEEN THE HIGHEST SCORE (IN BOLD) AND OTHER SCORES

OBTAINED BY VARYING Nc . ON THE LAST ROWS, NSV Dist. MEANS NON SPATIALLY VARIANT JOINT DISTRIBUTION AND

SVDIST2YO MEANS SPATIALLY VARIANT JOINT DISTRIBUTION OF 2 Y.O. GROUP

section, the parameter Nc appears to be much more important
when it comes to generate plausible visual scanpaths.

B. Are Visual Scanpaths Plausible?

Saccadic models predict salient areas as well as to generate
scanpaths that present similar features as human scanpaths.

From the predicted scanpaths, we compute, for each age group
and for both saliency models (i.e. GBVS and RARE2012),
the 1D distribution of saccade amplitudes and the 2D joint dis-
tribution of saccade amplitudes and orientations. We evaluate
the Kullback-Leibler (KL) divergence between these distribu-
tions and the distributions computed from eye tracking data.
Fig. 6 plots the KL scores in function of the parameter Nc .
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Fig. 6. KL-divergence between the actual and the predicted distributions in function of the number of candidates Nc for the adults, 4-6 years-old and
2 years-old groups. Top row: the KL-divergence is computed between the actual distribution of saccade ampltiudes and the predicted one. Bottom-row:
the KL-divergence is computed between the actual joint distribution of saccade amplitudes and saccade orientations and the predicted one. (a) 2 years-old.
(b) 4-6 years-old. (c) Adults.

We observe that the KL scores follow a U-shaped curve. The
KL scores are higher for low and high values of Nc . A low
value of Nc corresponds to high dispersion between observers
whereas a high value reduces the randomness of the fixation
point selection. The best KL scores are obtained for Nc in the
range 4 to 6. More specifically, for each age group, we select
the best Nc value in order to get the best compromise between
salient area prediction and scanpath plausibility. For adults and
6-10 year-old groups, Nc = 4. For 4-6 and 2 year-old, Nc = 5.

Fig. 7 shows the distributions of saccade amplitudes
(top row) and the joint distributions of saccade amplitudes
and orientations for the age groups when considering the
aforementioned values of Nc (bottom row).3 We observe that
the distributions of saccade amplitudes computed with the
proposed saccadic model have a similar shape when compared
with actual distributions. We note, however, that the proposed
model tends to generate larger saccades. The main peak of
the predicted distributions is between 2 and 3 degrees of
visual angle, whereas the main peak of actual distributions
is about 2 degrees of visual angle. This discrepancy might be
due to the computational modelling of the inhibition-of-return
mechanism which does not entirely reflect the reality. A second
explanation might be related to the computation of joint
distributions, as well as how they are used. One of the strength
of the proposed saccadic model is that we use spatially-
variant joint distributions (see section V-C for more details).
However, only 9 joint distributions are used to reproduce the

3In supplementary material, more results are given, especially for low and
high values of Nc .

gaze deployment, which might not be enough. Increasing this
number would make sense but would require more fixation
points in order to compute accurate and relevant distributions.
Another concern pertains to the memory effect that is not taken
into account. Indeed, there is a time dependency in saccade
amplitudes. Small amplitude saccades tend to be followed
by large amplitude saccades, which are followed by small
ones [43], [70].

We also noticed that the key ingredient to produce plau-
sible scanpath is not the input saliency map, as illustrated
by Fig. 7. Although that GBVS and RARE2012 models
generate saliency maps that have rather different saliency
distributions, as illustrated by Fig. 5 (a), the saccadic model
manages to produce plausible scanpaths in both cases.

The middle and bottom rows of Fig. 7 illustrate the
joint distributions computed from GBVS-based scanpaths and
RARE2012-based scanpaths, respectively. Compared to actual
joint distributions shown in Fig. 4, we observe a similar
evolution of the saccadic behavior. For the 2 year-old group,
saccade amplitudes are rather small and isotropic. The hor-
izontal bias as well as large saccades progressively appears
with aging. The horizontal bias is very noticeable for adults
groups.

C. Joint Distribution Influences

In this section, we discuss the influence of the joint
distributions by comparing the performance of the proposed
age-dependent saccadic model with those obtained by
considering age-independent distribution, uniform joint
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Fig. 7. Features of the predicted scanpaths. Top row: the actual and the predicted distributions of saccade amplitudes are plotted for Nc = 5, Nc = 4
and Nc = 4 corresponding to 2 year-old, 4-6 year-old and adults groups, respectively. Middle and bottom rows: joint distributions of saccade amplitudes
and saccade orientations computed from GBVS-based saccadic model and RARE2012-based saccadic model, respectively. (a) 2 years-old. (b) 4-6 years-old.
(c) Adults.

distribution and spatially-invariant distribution. We perform
these tests by considering the following setting: GBSV and
RARE2012 model, adult groups and Nc = 4. We also empha-
size that we do not need to consider different learning and
training subsets for inferring the joint distribution of saccade
amplitudes and orientations. Indeed, similarly to [21] and [22],
we observe a systematic tendency in visual deployment as
soon as the population is homogeneous and watch similar
stimuli.

1) Age-Dependent vs Age-Independent Distribution: In this
case, instead of using the spatially-variant joint distribution
of adult group, we use the 2 y.o. spatially-variant joint dis-
tribution when computing adult scanpaths. We evaluate the
performance of this modified model with the adult ground
truth. Table II (bottom row called SVDist2yo) indicates that
the ability to predict salient areas decreases when considering
2 y.o. distribution instead of adult one. In addition, when
comparing the saccade amplitude distribution generated by

this model (see Fig. 8 a)) with the best one (see top-right
plot in Fig. 7), we observe that the predicted scanpaths are
less plausible than those obtained with the model using adult
distribution.

2) Uniform Joint Distribution: To further evaluate the
influence of the joint distribution on the results, we set in
equation 1, pB(d(x, xt−1), φ(x, xt−1)) = 1, ∀x ∈ �. In [71],
Tatler and Vincent gave evidence that the viewing biases may
be fundamental to predict where we look at. Results are pre-
sented in the bottom of Table II. As expected, the performances
decrease, but they are still interesting. However, this solution
does not allow us to generate plausible visual scanpaths as
illustrated in Fig. 8 b).

3) Spatially-Variant vs Invariant Joint Distributions: As
presented at the bottom of Table II, the use of spatially-variant
joint distributions increases the performance of the saccadic
model when compared to the saccadic model using a non
spatially-variant joint distribution (see the acronym NSV dist.).
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Fig. 8. (a) Actual and the predicted distributions of saccade amplitudes (see the difference with the top-right distribution in Fig. 7); (b) Joint distribution of
saccade amplitudes and orientations when we do not consider viewing biases: pB (d(x, xt−1), φ(x, xt−1)) = 1, ∀x ∈ �. Note that the scale is not similar to
previous used scales.

VI. CONCLUSION

In this paper, we show that saccadic models can be tailored
for different age groups. Our saccadic model combines low-
level salience, memory effects and viewing biases. Low-level
salience is computed by state-of-the-art bottom-up saliency
models. Memory effects represent the inhibition-of-return
mechanism which performs the inhibition of an attended
location in order to foster the scene exploration. The last
component, i.e. viewing biases, provides fundamental infor-
mation about how observers explore a visual scene. We show
that these viewing biases evolve with the maturation of the
visual system. We were able to capture differences in gaze
behaviour between age groups with joint distributions of sac-
cade amplitudes and orientations. This representation, which
is learned from actual eye tracking data, turns out to be fairly
different for 2 year-old, 4-6 year-old, 6-10 year-old and adult
observers. By using this age-based visual signature, we showed
that the proposed age-dependent saccadic model outperforms
not only GBVS and RARE2012 saliency models but succeeds
in generating scanpaths that match actual eye tracking data.

Obviously, the present saccadic model cannot fully account
for the complex nature of overt visual attention. Although that
the joint distribution of saccade amplitudes and orientations
has a number of merits, it would be required to incorporate
other known properties of gaze behavior, such as the fixation
duration, the time dependencies between successive saccades
and advanced scanpath statistics. These aspects will be tackled
in future works.

This study may have a significant impact on some computer
vision applications. For instance, it would allow us to tailor
saliency-based image compression algorithms for observers of
a specific age. Another example is related to image retargeting
methods, which consist in reducing the image size while
keeping the most visually important areas [20]. Most retarget-
ing methods are based on importance maps that indicate the
locations to preserve. Retargeting results could be improved
by computing age-dependent importance map.

A side result of this work concerns the better understanding
of the maturation of the visual system from childhood to adult-
hood, which could help to design new assistive applications
for visually impaired people.

In supplementary material, a video sequence showing the
maturation of eye movement behavior with respect to saccade
amplitudes and orientations is provided. This video shows the
influence of aging on saccade amplitudes and orientations,
spanning from childhood to adulthood.
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