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Previous research showed the existence of systematic tendencies in viewing behavior during scene explo-
ration. For instance, saccades are known to follow a positively skewed, long-tailed distribution, and to be
more frequently initiated in the horizontal or vertical directions. In this study, we hypothesize that these
viewing biases are not universal, but are modulated by the semantic visual category of the stimulus. We
show that the joint distribution of saccade amplitudes and orientations significantly varies from one
visual category to another. These joint distributions are in addition spatially variant within the scene
frame. We demonstrate that a saliency model based on this better understanding of viewing behavioral
biases and blind to any visual information outperforms well-established saliency models. We also pro-
pose a saccadic model that takes into account classical low-level features and spatially-variant and
context-dependent viewing biases. This model outperforms state-of-the-art saliency models, and pro-
vides scanpaths in close agreement with human behavior. The better description of viewing biases will
not only improve current models of visual attention but could also influence many other applications
such as the design of human–computer interfaces, patient diagnosis or image/video processing
applications.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

When looking at complex visual scenes, we perform in average
4 visual fixations per second. This dynamic exploration allows
selecting the most relevant parts of the visual scene and bringing
the high-resolution part of the retina, the fovea, onto them. To
understand and predict which parts of the scene are likely to
attract the gaze of observers, vision scientists classically rely on
two groups of gaze-guiding factors: low-level factors (bottom-
up) and observers or task-related factors (top-down).

1.1. Saliency modeling: past and current strategies

A recent review of 63 saliency models from the literature
showed that 47 of them use bottom-up factors, and only 23 use
top-down factors (Borji and Itti, 2013). The great majority of these
bottom-up models rely on the seminal contribution of Koch and
Ullman (1985). In this study, the authors proposed a plausible
computational architecture to compute a single topographic sal-
iency map from a set of feature maps processed in a massively par-
allel manner. The saliency map encodes the ability of an area to
attract one’s gaze. Since the first models (Clark and Ferrier, 1988;
Tsotsos et al., 1995; Itti et al., 1998), their performance has
increased significantly, as shown by the on-line MIT benchmark
(Bylinskii et al., 2015). However, several studies have pointed out
that, in many contexts, top-down factors clearly take the prece-
dence over bottom-up factors to explain gaze behavior (Tatler
et al., 2011; Einhäuser et al., 2008; Nyström and Holmqvist,
2008). Several attempts have been made in the last several years
to add top-down and high-level information in saliency models.
Torralba et al. (2006) improve the ability of bottom models by
using global scene context. Cerf et al. (2008) combine low-level sal-
iency map with face detection. Judd et al. (2009) use horizon line,
pedestrian and cars detection. Le Meur (2011) use two contextual
priors (horizon line and dominant depth of the scene) to adapt the
saliency map computation. Coutrot and Guyader (2014a) use audi-
tory information to increase the saliency of speakers in conversa-
tion scenes.

Saliency map representation is a convenient way to indicate
where one is likely to look within a scene. Unfortunately, current
saliency models do not make any assumption about the sequential
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and time-varying aspects of the overt attention. In other words,
current models implicitly make the hypothesis that eyes are
equally likely to move in any direction. Saccadic models introduced
in the next section strive to overcome these limitations.

1.2. Tailoring saliency models to human viewing biases

Rather than computing a unique saliency map, saccadic models
aim at predicting the visual scanpaths, i.e. the suite of fixations and
saccades an observer would perform to sample the visual environ-
ment. As saliency models, saccadic models have to predict the sali-
ent areas of our visual environment. But the great difference with
saliency models is that saccadic models have to output plausible
visual scanpaths, i.e. having the same peculiarities as human scan-
paths. Ellis and Smith (1985) pioneered in this field by elaborating
a general framework for generating visual scanpaths. They used a
stochastic process where the position of a fixation depends on
the previous fixation, according to a first-order Markov process.
This framework was then improved by considering saliency infor-
mation, winner-take-all algorithm and inhibition-of-return
scheme (Itti et al., 1998; Itti and Koch, 2000). More recently, we
have witnessed some significant achievements thanks to the use
of viewing behavioral biases, also called systematic tendencies
(Tatler and Vincent, 2009). The first bias that has been considered
is related to the heavy-tailed distribution of saccade amplitudes.
Saccades of small amplitudes are indeed far more numerous than
long saccades. Small saccades would reflect a focal processing of
the scene whereas large saccades would be used to get contextual
information. The latter mechanism is associated to ambient pro-
cessing (Follet et al., 2011; Unema et al., 2005). A second bias con-
cerns the distribution of saccade orientations. There is indeed an
asymmetry in saccade orientation. Horizontal saccades (leftwards
or rightwards) are more frequent than vertical ones, which are
much more frequent than oblique ones. Foulsham et al. (2008)
explain some of the possible reasons behind this asymmetry in sac-
cade direction. First, this bias might be due to the dominance of the
ocular muscles, which preferentially trigger horizontal shifts of the
eyes. A second reason is related to the characteristics of natural
scenes; this encompasses the importance of the horizon line and
the fact that natural scenes are mainly composed by horizontally
and vertically oriented contours. The third reason cited by
Foulsham et al. (2008) relates to how eye-tracking experiments
are carried out. As images are most of the time displayed onscreen
in landscape mode, horizontal saccades might be the optimal solu-
tion to efficiently scan the scene.

The use of such oculomotor constraints allows us to improve
the modeling of scanpaths. Brockmann and Geisel (2000) used a
Lévy flight to simulate the scanpaths. This approach has also been
followed in Boccignone and Ferraro (2004), where gaze shifts were
modeled by using Lévy flights constrained by salience. Lévy flight
shifts follow a 2D Cauchy distribution, approximating the heavy-
tailed distribution of saccade amplitudes. Le Meur and Liu (2015)
use a joint distribution of saccade amplitudes and orientations in
order to select the next fixation location. Rather than using a para-
metric distribution (e.g. Gamma law, mixture of Gaussians, 2D
Cauchy distributions), Le Meur and Liu (2015) use a non-
parametric distribution inferred from eye tracking data.

In this paper, we aim at further characterizing the viewing ten-
dencies one follows while exploring visual scenes onscreen. We
hypothesize that these tendencies are not so systematic but rather
vary with the visual semantic category of the scene.

1.3. Visual exploration: a context-dependent process

Exploration of visual scenes has been tackled through two
interdependent processes. The first one proposes that exploration
is driven by the content, i.e. influenced by low-level statistical
structural differences between scene categories. It is well known
that low-level features such as color, orientation, size, luminance,
motion guide the deployment of attention (Wolfe and Horowitz,
2004). Many studies have linked physical salience and eye move-
ments within static (Parkhurst et al., 2002; Peters et al., 2005;
Tatler et al., 2005), and dynamic natural scenes (Carmi and Itti,
2006; Mital et al., 2010; Smith and Mital, 2013; Coutrot and
Guyader, 2014b). Thus, scene categories could affect visual explo-
ration through saliency-driven mechanisms, caused by systematic
regularities in the distribution of low-level features. For instance,
city images usually have strong vertical and horizontal edges due
to the presence of man-made structures (Vailaya et al., 2001).
The second process considers scene context as the relations
between depicted objects and their respective locations within
the scene. This global knowledge of scene layout provides obser-
vers with sets of expectations that can guide perception and influ-
ence the way they allocate their attention (Bar, 2004). These
studies start from the observation that humans can recognize
and categorize visual scenes in a glance (Biederman et al., 1974),
i.e. below 150 ms (Thorpe et al., 1996), or even below 13 ms
(Potter et al., 2014). Bar proposed that this extremely rapid extrac-
tion of conceptual information is enabled by global shape informa-
tion conveyed by low spatial frequencies (Bar, 2004). Each visual
scene would be associated to a ‘context frame’, i.e. a prototypical
representation of unique contexts (Bar and Ullman, 1996). This
contextual knowledge (learnt intentionally or incidentally through
experience) helps us to determine where to look next (Henderson
and Hollingworth, 1999; Chun, 2000). For instance, objects of
interest such as cars or pedestrians tend to appear in the lower half
of the visual field in city street scenes. In a nutshell, the first glance
establishes the context frame of the scene, which then impacts the
following exploration (see Wu et al. (2014) for a review). The nat-
ure of the relative contributions of these two processes is still an
open question. A recent study tried to disentangle the contribu-
tions of low-level features and knowledge of global scene organiza-
tion (O’Connell and Walther, 2015). Participants either freely
explored the entire image (and thus made use of both physical sal-
ience and scene category information), or had their gaze restricted
to a gaze-contingent moving window (peripheral access to the
physical salience was blocked, encouraging the use of content-
driven biases). The authors found distinct time courses for
salience-driven and content-driven contributions, but concluded
that the time course of gaze allocation during free exploration
can only be explained by a combination of these two components.

So far, attention models have mostly relied on the first process,
considering each low-level feature as an isolated factor able to
attract attention by itself (with the notable exception of Torralba’s
Contextual Guidance model (Torralba et al., 2006). In this paper,
we propose a new framework binding low-level saliency with
context-based viewing tendencies triggered by a swift recognition
of scene category.

1.4. Contributions

As in Tatler and Vincent (2009), we believe that understanding
and incorporating viewing behavioral biases into saccadic models
will help improve their performance. However, we think that these
viewing biases are not universal, but are tuned by the semantic
visual category of the stimulus. To test this hypothesis, we use 6
eye tracking datasets featuring different categories of visual con-
tent (static natural scenes, static web pages, dynamic landscapes
and conversational videos). For each dataset, we compute the joint
distribution of saccade amplitudes and orientations, and outline
strong differences between them. We also demonstrate that these
distributions depend on the spatial location within the scene. We
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show that, for a given visual category, Le Meur and Liu (2015)’s
saccadic model tuned with the corresponding joint distribution
of saccade amplitudes and orientations but blind to low-level
visual features significantly performs well to predict salient areas.
Going even further, combining our spatially-variant and context-
dependent saccadic model with bottom-up saliency maps allows
us to outperform the best-in-class saliency models.

The paper is organized as follow. Section 2 presents on one hand
the eye tracking datasets used in this study and on the other hand
the method for estimating the joint distribution of saccade ampli-
tudes and orientations. Section 3 demonstrates that the joint distri-
bution of saccade amplitudes and orientations is spatially-variant
and scene dependent. In Section 4, we also evaluate the ability of
these viewing biases to predict eye positions as well as the perfor-
mance of the proposed saccadic model. Section 5 discusses the
results and some conclusions are drawn in Section 6.

2. Method

2.1. Eye tracking datasets

Table 1 presents the six eye tracking datasets used in this study.
They feature a large variety of visual content. Bruce and Tsotsos
(2009), Kootstra et al. (2011) and Judd et al. (2009)’s datasets are
composed of natural static scenes. These first 3 datasets are classi-
cally used for benchmarking saliency models. Shen and Zhao
(2014)’s dataset is composed of 146 static webpage images. The
last dataset proposed by Coutrot and Guyader (2014b) is composed
of video clips belonging to two different visual categories: humans
having conversations, and landscapes. All the videos are shot with
a static camera.

Fig. 1 presents representative images of Shen and Zhao (2014)
and Coutrot and Guyader (2014b)’s datasets.

2.2. Joint distribution of saccade amplitudes and orientations

When looking within complex scenes, human observers show a
strong preference for making rather small saccades in the horizon-
tal direction. Distribution of saccade amplitudes is positively-
skewed (Gajewski et al., 2005; Le Meur and Liu, 2015;Pelz and
Canosa, 2001; Tatler and Vincent, 2008). As mentioned earlier,
observers have also a strong bias to perform horizontal saccades
compared to vertical ones.

To compute the joint probability distribution pðd;/Þ of saccade
amplitudes and orientations, we follow (Le Meur and Liu, 2015)’s
procedure. d and / represent the saccade amplitudes expressed
in degree of visual angle and the angle between two successive
saccades expressed in degree, respectively. Kernel density estima-
tion (Silverman, 1986) is used for estimating such a distribution.
We define di and /i the distance and the angle between each pair
of successive fixations respectively. From all the samples ðdi;/iÞ,
we estimate the probability that a fixation is featured by a distance
d and an angle / as follows:

pðd;/Þ ¼ 1
n

Xn

i¼1

Khðd� di;/� /iÞ ð1Þ

where, n is the total number of samples and Kh is a two-
dimensional anisotropic Gaussian kernel. h ¼ ðhd;h/Þ is the kernel
bandwidth. Separate bandwidths were used for angle and distance
components. We evenly divide the saccade amplitude range into 80
bins (one bin representing 0.25�) assuming that the maximum sac-
cade amplitude is equal to 20�. The angle / ranges from 0 to 359�

with a bin equal to one degree.
Rather than computing a unique joint distribution per image,

we evenly divide the image into a N � N equal base frames. This
process is illustrated in Fig. 2 for N ¼ 3. N ¼ 3 is a good trade-off
between complexity and quality of the estimated distribution.
Indeed it would not be appropriate to increase N because of the
small number of saccades that would fall within base frames
located on the borders. Decreasing N, i.e. N ¼ 2, would spread the
central saccades, which are the most numerous due to the center
bias (Le Meur et al., 2006; Tatler, 2007), over the 4 base frames.
The numbering of base frames is given at the top-left corner of
each base frame, as illustrated in Fig. 2. The distributions of saccade
orientations (shown on polar plot) which are superimposed on the
image are also showed. We will comment these distributions in
Section 3.
3. Is the distribution of saccade amplitudes and orientations
spatially-variant and scene dependent?

The joint distributions of saccade amplitudes and orientations
are separately estimated for natural static scenes (images of Judd,
Bruce and Kootstra’s datasets), static webpages (Shen’s dataset),
conversational video sequences involving at least two characters
(Coutrot’s dataset) and dynamic landscapes (Coutrot’s dataset).
The subsequent analyses are performed over 87,502, 27,547,
41,040 and 31000 fixations for the aforementioned categories,
respectively. Fig. 3 shows the spatial dispersal of these fixations
over the 3� 3 grid. As expected, the image center plays an impor-
tant role. This is especially noticeable for the natural scenes (Fig. 3
(a)) and the dynamic landscapes (Fig. 3(d)). For the webpages and
conversational video sequences, the center bias is less important.
Fixations are spread over the upper left-hand side for webpages
whereas the upper part gathers most of the fixations for conversa-
tional video sequences. These first results highlight that the con-
tent of scenes influences visual behavior during task-free visual
exploration.

In the following subsection, we analyze the joint distribution of
saccade amplitudes and orientations for the different visual scenes.
We also examine whether the joint distribution is spatially-
invariant or not.
3.1. Influence of contextual information on saccade distribution

Fig. 4 presents the joint distribution of saccade amplitudes and
orientations when we consider all fixations, i.e. N ¼ 1. As expected,
distributions are highly anisotropic. Saccades in horizontal direc-
tions are more numerous and larger than vertical ones. The distri-
butions for natural scenes and dynamic landscapes share similar
characteristics such as the horizontal bias (rightward as well as
leftward) and the tendency to perform vertical saccades in an
upward directions. For webpages and conversational videos, we
observe very specific distributions. The horizontal bias is present
but mainly in the rightward direction for webpages. This tendency
is known as the F-bias (Buscher et al., 2009). Observers often scan
webpages in a F-shaped pattern (raster scan order). For conversa-
tional videos, the distribution also has a very specific shape. Before
going further, let us recall that the conversational video sequences
involve at least two characters who are conversing. Note, as well,
that there is no camera motion. We observe three modes in the dis-
tribution (Fig. 4(c)): the first mode is located at the center and its
shape is almost isotropic. Saccades are rather small, less than 3
degrees. A plausible explanation is that the saccades of this mode
fall within the face of one character. Observers would make short
saccades in order to explore the face. Then the attention can move
towards another character who could be located on the left or
right-hand side of the current character. This could explain the
two other modes of the distribution. These two modes are
elongated over the horizontal axis and gather saccades having



Table 1
Eye fixation datasets used in this study. (I is the number of images (or video sequences), R is the resolution of the images, U is the number of observers, T is the viewing time, D is
the viewing distance, d is the screen diagonal, ppd is the the number of pixel per visual degree, S=[C = CRT; L = LCD] is the screen type). x means that this information is not
available. All stimuli and eye-tracking data are available online: http://www-sop.inria.fr/members/Neil.Bruce/, http://www.csc.kth.se/kootstra/index.php?item=215&menu=200,
http://people.csail.mit.edu/tjudd/WherePeopleLook/index.html, https://www.ece.nus.edu.sg/stfpage/eleqiz/webpage_saliency.html and http://antoinecoutrot.magix.net/pub-
lic/databases.html, respectively.

Dataset I R U T D d ppd S
[s] [cm] [in]

Natural scenes (still images)
Bruce and Tsotsos (2009) 120 681 � 511 20 4 75 21 22 C
Kootstra et al. (2011) 99 1024 � 768 31 5 70 18 34 C
Judd et al. (2009) 1003 �1024 � 768 15 3 61 19 42 L

Static web pages (still images)
Shen and Zhao (2014) 146 1360� 768 11 5 60 x 50 L

Video sequences
Coutrot and Guyader (2014b)
Conversational video 15 720� 576 72 12;30½ � 57 x 26 C
Dynamic landscapes 15 720� 576 72 10;31½ � 57 x 26 C

Fig. 1. Sample images from Shen and Zhao (2014)’s datasets (Top row) and from Coutrot and Guyader (2014b) (Second row presents images from the face category whereas
the third row presents images from the landscape category).
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amplitude in the range of 5 to 10 degrees of visual angle. As there is
a strong tendency to make horizontal saccades, it could suggest
that the characters’ faces are at the same level (which is indeed
the case).

A two-sample two-dimensional Kolmogorov–Smirnov (Peacock,
1983) is performed to test whether there is a statistically significant
difference between the distributions illustrated in Fig. 4. For two
given distributions, we draw 5000 samples and test whether both
data sets are drawn from the same distribution. For all conditions,
the difference is significant, i.e. p � 0:001.
These results clearly indicate that the visual strategy to scan
visual scene is influenced by the scene content. The shape of the
distribution of saccade amplitudes and orientations not only might
be a relevant indicator to guess the type of scene an observer is
looking at, but also a key factor to improve models of eye guidance.

3.2. Is saccade distribution spatially-invariant?

In this section, we investigate whether saccade distributions
vary spatially or not. Figs. 5–8 present the joint distributions of
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Fig. 2. Original image, extracted from Coutrot and Guyader (2014b)’s dataset,
divided into 9 equal base frames. The distributions of saccade orientations are
computed over each base frame. They are shown on polar plot and superimposed on
the image.

76 O. Le Meur, A. Coutrot / Vision Research 121 (2016) 72–84
saccade amplitudes and orientations for the nine base frames spa-
tially dividing the images and for the four categories, i.e. natural
scenes, webpages, conversational video and dynamic landscapes.

Several conclusions can be drawn from these figures. First,
whatever the considered datasets, the joint distributions dramati-
cally vary from one base frame to another, and from one dataset to
another.

For natural scenes and dynamic landscapes (see Figs. 5 and 6),
the well-known anisotropic shape of the joint distribution is
observed in the fifth base frame (the numbering is at the top-left
corner of the base frames). For all other base frames, there is a
strong tendency to make saccades towards the image’s center.
The image edges repel the gaze toward the center. More specifi-
cally, we observe, for the base frames located at the image’s cor-
ners, i.e. numbered 1, 3, 7, and 9, rather large saccades in the
diagonal direction (down-right, down-left, up-right and up-left
diagonal, respectively). This is also illustrated in Fig. 2 for a conver-
sational video sequence. For the base frames 2 and 8, horizontal
saccades (in both directions) and vertical saccades (downward
and upward, respectively) are observed. Base frames 4 and 6 are
mainly composed of rightward and leftward horizontal saccades,
respectively. These saccades allow us to refocus our gaze toward
the image’s center.

Regarding webpages (see Fig. 7), the saccades are mainly per-
formed rightward with rather small amplitudes. For the base
frames numbered 3, 6 and 9, there are few but large diagonal
Fig. 3. Spatial spreading of visual fixations when images are split into 9 base frames as i
interpretation of the references to colour in this figure legend, the reader is referred to
and vertical saccades. This oculomotor behavior reflects the way
we scan webpages. Observers explore the webpages from the
upper left corner in a pattern that looks like the letter F (Buscher
et al., 2009). Eyes are re-positioned on the left-hand side of the
webpage through large saccades in the leftward direction which
are slightly tilted down, as illustrated by base frames 3 and 6.

For conversational video sequences (see Fig. 8), a new type of
distribution shapes is observed. The distribution of the central base
frame is featured by two main modes elongated over the horizon-
tal axis and centered between 5 and 10 degrees of visual angle. As
explained in the previous subsection, these two modes represent
the faces of the conversation partners. Observers focus alternately
their attention on one particular face. This behavior is also
reflected by the distributions shown in base frames 1, 2, 3, 4 and
6. They are composed of saccades with rather large amplitudes
which are likely used to re-allocate the visual attention on the dis-
tant character. For instance, in base frame 4, the distribution
mainly consists of rightward saccades. Concerning base frames 7,
8, and 9, the number of saccades is much lower. Saccades are ori-
ented upward in the direction of image’s center.

In conclusion, these results give new insights into viewing
behavioral biases. Saccades distributions are not only scene-
dependent but also spatially-variant.
4. Performance of the proposed saccadic model

In this section, we investigate whether the spatially-variant and
scene dependent viewing biases could be used to improve the per-
formance of the saccadic model proposed in Le Meur and Liu
(2015).
4.1. Gauging the effectiveness of viewing biases to predict where we
look at

As in Tatler and Vincent (2009), we evaluate first the ability of
viewing biases to predict where we look at. We consider N ¼ 3
base frames and the four joint distributions computed from natural
scenes, dynamic landscapes, conversational and webpages.

We modify the saccadic model proposed in Le Meur and Liu
(2015) by considering a uniform saliency map as input. It means
that we know nothing about the scene. Another modification con-
sists in using 9 distributions as illustrated in the previous sections,
instead of a unique and global joint distribution of saccade ampli-
tudes and orientations. In this model, a parameter called Nc is used
to tune the randomness of the model: Nc ¼ 1 leads to the maxi-
mum randomness, whereas increasing Nc will reduce the stochas-
tic behavior of the model. In this study, we keep the value
recommended by Le Meur and Liu (2015), i.e. Nc ¼ 5. We generate
100 scanpaths, each composed of 10 fixations. The first fixation
llustrated in Fig. 2. The color scale expresses the percentage of visual fixations. (For
the web version of this article.)



Fig. 4. Joint distribution shown on polar plot for (a) natural scenes, (b) webpages, (c) conversational video and (d) dynamic landscapes.

Fig. 5. Probability distribution of saccade amplitudes and orientations shown on a polar plot (natural scenes from Judd, Bruce and Kootstra’s dataset). A sample image
belonging to this category is used as background image.
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point is randomly drawn. From the set of scanpaths, we generate
predicted saliency maps by convolving the fixation maps, gather-
ing all predicted fixations, with a 2D Gaussian function, as
described in Le Meur and Baccino (2013). Fig. 9 presents the pre-
dicted saliency maps obtained by considering viewing biases alone.
We refer to these maps as viewing biases-based predicted saliency
maps. The top row presents the saliency maps when considering
that the joint distribution is spatially-invariant (i.e. N ¼ 1). The dis-
tributions shown in Fig. 4 are here used. The middle row of Fig. 9
illustrates the predicted saliency maps when the distributions
are considered as being spatially-variant. In this case, nine distri-
butions per category are used to get the map. In the bottom row
of Fig. 9, we wanted to demonstrate the importance of using the
right distribution from the right base frame. For this purpose, the
base frame numbering is shuffled before computing the predicted
saliency maps. For instance, when a fixation falls within the base
frame numbered one, instead of using the actual distribution of
saccade amplitudes and orientations, we use the distribution of
the base frame numbered 9 to predict the next fixation point.

When the viewing biases are described by only one distribution,
viewing biases-based predicted saliency maps tend to be rather
uniform, whatever the scene category (see top row of Fig. 9). The
similarity between predicted saliency maps is qualitatively high
although that the distributions we use are statistically different,
as described in subSection 3.1. When we consider more than one
distribution, i.e. 9, predicted saliency maps are less similar (middle
row of Fig. 9). The predicted salience associated to conversational
videos is mainly located in the upper part of the scene, which is
consistent with the scene content. It is also noticeable that viewing
biases-based predicted saliency maps (a), (b) and (d) correspond-
ing to natural scenes, webpages and dynamic landscapes, respec-
tively, are center-biased. This is due to the re-positioning



Fig. 6. Probability distribution of saccade amplitudes and orientations shown on a polar plot (dynamic landscapes from Coutrot’s dataset). A sample image belonging to this
category is used as background image.

Fig. 7. Probability distribution of saccade amplitudes and orientations shown on a polar plot (webpages from Shen’s dataset). A sample image belonging to this category is
used as background image.
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saccades starting from the base frames located on the scene bor-
ders and landing around the center. When the base frame number-
ing is shuffled, the saliency maps do not exhibit special properties,
as illustrated by the bottom row of Fig. 9. Qualitatively speaking,
they are similar to saliency maps of the top row.
To assess the predictive power of viewing biases taken alone,
the viewing biases-based predicted saliency maps are compared
to human saliency maps estimated from the eye fixation dataset
of Bruce and Tsotsos (2009). We additionally compare human
saliency maps to maps computed by saliency models. Viewing



Fig. 8. Probability distribution of saccade amplitudes and orientations shown on a polar plot (conversational video from Coutrot’s dataset) A sample image belonging to this
category is used as background image.

Fig. 9. Predicted saliency maps when we consider only the viewing biases. Top row: a unique joint distribution of saccade amplitudes and orientations is used (N = 1). Middle
row: 9 distributions are used (N = 3). Bottom row: 9 distributions are also used but the saliency map is generated by shuffling the base frame numbering (N = 3 shuffled).
Different scenes categories are considered natural scenes (a), webpages (b), conversational video (c) and dynamic landscapes (d).

O. Le Meur, A. Coutrot / Vision Research 121 (2016) 72–84 79
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biases-based predicted saliency maps and saliency maps coming
from computational saliency models rely on two radically different
strategies. The former is only based on the viewing biases and is
blind to visual information in the scene. The latter is based on a
perfect knowledge of the visual scene but assumes there is no con-
straint on how eye movements are performed.

The similarity between saliency maps is quantified by using the
linear correlation coefficient (noted CC), Earth Mover’s Distance
measure (noted EMD) and histogram intersection (noted SIM).
The linear correlation coefficient evaluates the degree of linearity
between the two sets. It varies between �1 and 1. The Earth
Mover’s Distance, also calledWasserstein metric, measures the dis-
tance between two probability distributions and evaluates the
Fig. 10. Correlation Coefficients (CC) of saliency maps only based on viewing biases
(i.e. blind to image information) over Bruce’s dataset. We compare saliency maps
composed of a unique distribution (N = 1), 9 distributions (N = 3), and 9 shuffled
distributions (N = 3 Shuffled). Saliency maps’ performances are compared when
viewing biases are estimated from eye movements recorded on natural scenes,
webpages, conversational videos and dynamic landscapes. Error bars denote �1
standard deviations.

Table 2
Performance (average � standard deviation) of saliency models over Bruce’s dataset. In pink
the top 2 models ((Riche et al., 2013) + (Harel et al., 2006)) into a single bottom-up model: T
from Top2(R+H) and viewing biases are combined. First, we assess the context-independe
Second, we assess our context-dependent saccadic model based on 9 distributions (N
conversational videos and landscape videos). Three metrics are used: CC (linear correlation)
refer to the text.
minimum cost for turning one distribution into the other.
EMD ¼ 0 for identical distributions. SIM computes the intersection
between histograms. It varies between 0 and 1. SIM ¼ 1 means the
distributions are identical. These three methods are used for
benchmarking saliency models (see the website http://saliency.
mit.edu/index.html, (Judd et al., 2012)).

Fig. 10 assesses the performance of saliency maps only based on
viewing biases estimated from eye movements recorded on Natu-
ral Scenes, Webpages, Conversational videos and Landscape videos.
Viewing biases are estimated within a unique distribution (N = 1),
9 distributions (N = 3), and 9 shuffled distributions (N = 3 Shuffled).
For the sake of clarity, only CC are reported, but the results are sim-
ilar for SIM and EMD. There is a great benefit to consider spatially-
variant viewing biases. Indeed, whatever the metrics and the scene
category, the ability to predict where human observers fixate is
much better when 9 distributions are considered. For natural sce-
nes, the CC gain is 0:16. When the base frame numbering is shuf-
fled, the performance dramatically drops. We ran a two-way
ANOVA (Fx�category, where Fx ¼ FN¼1; FN¼3; FN¼Shuffled

� �
) on CC

scores. We found a significant of visual category (F(3,1428)
= 38.3, p < 0:001), and of Fx (F(2,1428) = 222.6, p < 0:001), and of
their interactions (F(6,1428) = 64.5, p < 0:001). Bonferroni post
hoc comparisons showed that CC scores are higher for N ¼ 3 than
for N ¼ 1 or N ¼ Shuffled (both p < 0:001). There were no differ-
ences between N ¼ 1 and N ¼ Shuffled (p ¼ 0:16). Simple main
effect analysis showed that CC scores are higher for N ¼ 3 than
for N ¼ 1 for Landscapes, Natural Scenes and Webpages (all
p < 0:001), but there were no differences for Faces (p ¼ 0:2). These
results support the fact that the distribution of saccade is spatially-
variant.

Table 2 compares saliency maps computed by state-of-the-art
saliency models with the context-independent saccadic model
based on a single distribution (N = 1) from Le Meur and Liu
(2015) and our context-dependent, spatially-variant saccadic
model. First, by comparing Fig. 10 with the upper part of Table 2,
we observe that a computational model based on viewing biases
alone significantly outperforms 3 out of the 7 tested saliency
cells, we compare state-of-the-art saliency maps with human saliency maps. We add
op2(R+H). In green cells, we compare the performances when low-level visual features
nt saccadic model based on a single distribution (N = 1) from Le Meur and Liu (2015).
= 3), with viewing biases estimated from 4 categories (natural scenes, webpages,
, SIM (histogram similarity) and EMD (Earth Mover’s Distance). For more details please

http://saliency.mit.edu/index.html
http://saliency.mit.edu/index.html
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models. We ran a one-way ANOVA on CC scores2, and found a main
effect of models (F(7,952)=49.05, p < 0:001). Bonferroni post hoc
comparisons showed that CC scores are higher for N ¼ 3 than for
the models of Bruce, Itti and Le Meur (all p < 0:001). We found no
differences between N ¼ 3 and Garcia, (p ¼ 0:31), Judd (p ¼ 0:22)
and Riche (p ¼ 0:10) models. The only saliency model presenting
higher CC scores is Harel’s model (p ¼ 0:002). Regarding SIM scores,
we found a main effect of models (F(7952) = 53.3, p < 0:001). Bonfer-
roni post hoc comparisons showed that SIM scores are higher for
N ¼ 3 than for the models of Bruce, Itti and Judd (all p < 0:001).
We found no differences between N ¼ 3 and Garcia (p ¼ 0:15) and
Le Meur (p ¼ 0:41). Harel and Riche models presented higher SIM
scores than N ¼ 3 (p ¼ 0:02 and p ¼ 0:002, respectively). Finally,
we ran a one-way ANOVA on EMD scores, and found a main effect
of models (F(7952)=34.6, p < 0:001). Bonferroni post hoc compar-
isons showed that EMD scores are lower for N ¼ 3 than for Garcia,
Bruce, Itti, Judd (all p < 0:001) and Le Meur (p ¼ 0:005) models.
We found no differences between N ¼ 3, Harel and Riche (all
p ¼ 1) models.

It is worth pointing out that, when the viewing biases used to
estimate the predicted saliency maps do not correspond well with
the type of the processed images, the performances decrease. This
is illustrated by the conversational predicted saliency map, (see
Fig. 9(c)), which does not perform well in predicting human sal-
iency. This is probably related to the fact that Bruce’s dataset is
mainly composed by natural indoor and outdoor scenes. In this
context, the very specific conversational saliency map in which
the salience is concentrated in the upper part turns out to be a poor
saliency predictor.

In summary, this result highlights that viewing strategies
adapted to scene category could be efficiently used to predict
where observers look. This significant role in guiding spatial atten-
tion could be further improved by considering the bottom-up sal-
ience. We investigate this point in the next section.

4.2. Bottom-up salience and viewing biases for predicting visual
scanpaths

Rather than considering a uniform saliency map as input of Le
Meur and Liu (2015)’s model, as we did in the previous section,
we use a saliency map which is the average of the saliency maps
computed by two well-known saliency models, namely (Harel
et al., 2006) and (Riche et al., 2013). Combining (Harel et al.,
2006) and (Riche et al., 2013) models (called Top2(R+H) in Table 2)
significantly increases the performance, compared to the best per-
forming saliency model, i.e. (Riche et al., 2013)’s model (see Le
Meur and Liu (2014) for more details on saliency aggregation).
When the Top2(R+H) saliency maps are used as input of Le Meur
and Liu (2015)’s model, the capacity to predict salient areas is get-
ting higher than the Top2(R+H) model alone. For instance, there is
a significant difference between the Top2(R+H) model and (Le
Meur and Liu, 2015)’s model in term of linear correlation. The
former performs at 0.62 whereas the latter performs at 0.64
(paired t-test, p ¼ 0:012), see Table 2.

When we replace invariant and context-independent joint dis-
tribution of saccade amplitudes and orientations used by Le
Meur and Liu (2015) with spatially-variant and context-
dependent joint distributions, the ability to predict where we look
is getting better according to the linear correlation coefficient, with
the notable exception of conversational distribution. The best
model is the model that takes into account the joint distribution
computed from Landscapes datasets. Compared to Le Meur and
2 We consider the distributions computed from natural scenes since Bruce’s datase
is mainly composed of natural scenes
t

Liu (2015)’s model, the linear correlation gain is 0.012, but without
being statistically significant. The model using the joint distribu-
tion of natural scenes is ranked 2. We observe a loss of perfor-
mance when the joint distribution computed over conversational
frames is used. Compared to Le Meur and Liu (2015)’s model, the
linear correlation drops down from 0.641 to 0.628. According to
SIM and EMD, the use of context-dependent and spatially-variant
distributions does not further improve the ability to predict sal-
iency areas.

From these results, we can draw some conclusions. Taken alone,
the performance in term of linear correlation is, at most, 0.62 and
0.48 for bottom-up saliency map and viewing biases, respectively.
As expected, the performance significantly increases when bottom-
up saliency map are jointly considered with viewing biases, with a
peak of CC at 0.653. A similar trend is observed for SIM and EMD
metrics. However, we notice that the use of context-dependent
and spatially-variant distributions does not significantly improve
the prediction of salient areas compared to a model that would
use invariant and context-independent joint distribution of sac-
cade amplitudes and orientations. This result is disappointing
since, as shown in Section 4.1, context-dependent and spatially-
variant distributions alone significantly outperform invariant and
context-independent distribution when predicting salient areas.
A major difference between these two kinds of distribution is the
presence of re-positioning saccades in the spatially-variant distri-
butions; these saccades allow us to re-position the gaze around
the screen’s center, promoting the center bias. When context-
dependent and spatially-variant distributions are jointly used with
bottom-up saliency maps, this advantage vanishes. There are at
least two reasons that could explain this observation. The first
one is that saliency models, such as Harel’s model (Harel et al.,
2006), tend to promote higher saliency values in the center of
the image. Therefore, the influence of re-positioning saccades on
the final result is less important. The other reason is that the use
of viewing biases is fundamental to provide plausible visual scan-
paths (see Section 4.3), and, to a lesser extent, to predict eye
positions.

We believe however that a better fit of the joint distributions to
Bruce’s images would further increase the performance of our
model on this dataset. Indeed, we previously observed that the per-
formance worsens when the joint distribution does not fit the
visual category of Bruce’s images, e.g. when we use the joint distri-
bution computed from conversational videos. To support this
claim, we perform a simple test. As Bruce’s dataset is mainly com-
posed of street images (about 46%) and indoor scenes (about 36%),
we select for each image of this dataset the best performance
obtained by our saccadic model when using either Landscapes or
Natural scenes joint distributions. We do not consider the two
other distributions, i.e. Webpages and Conversational, considering
that they do not correspond at all to Bruce’s dataset. We observe
that the performances further increase for CC and SSIM metrics
(CC ¼ 0:661; SIM ¼ 0:575) and stay constant for EMD metric
(EMD ¼ 2:1). This result suggests that an even better description
of viewing biases would further increase performance of saliency
models.

4.3. Joint distribution of saccade amplitudes and orientations of
predicted scanpaths

Asdiscussed in theprevious section, the saliencymaps computed
from the predicted visual scanpaths turn out to be highly competi-
tive in predicting salient areas. But saccadicmodels not only predict
bottom-up saliency, they also produce visual scanpaths in close
agreement with human behavior. Fig. 11(a)–(d) illustrates the polar
plots of the joint distributions of saccade amplitudes and orienta-
tions of predicted scanpaths, when considering context-dependent



Fig. 11. Joint distribution of predicted scanpaths shown on polar plot for (a) natural scenes, (b) webpages, (c) conversational video and (d) dynamic landscapes. Scanpaths are
generated by the context-dependent saccadic saliency model (Top2(R+H), N ¼ 3).
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distributions. As expected, we observe that the predicted visual
scanpaths characteristics (i.e. saccade amplitudes and orientations)
are context-dependent. For instance, when the joint distribution
estimated from static webpages is used by the saccadic model to
predict scanpaths, the proportion of rightward saccades is much
higher than leftward saccades and vertical saccades. For conversa-
tional videos, we observe two dominant modes located on the hori-
zontal axis. These observations are consistent with those made in
Section 2.2. We can indeed notice a strong similarity between the
joint distribution of saccade amplitudes and orientations of human
scanpaths, illustrated in Fig. 4, and those of predicted scanpaths.

Joint distributions of Fig. 11 exhibit however few short saccades
and few vertical saccades. These discrepancies are likely due to the
design of the inhibition-of-return mechanism used in Le Meur and
Liu (2015). In the latter model, the spatial inhibition-of-return
effect declines as an isotropic Gaussian function depending on
the cue-target distance (Bennett and Pratt, 2001). Standard devia-
tion is set to 2�. These discrepancies might be reduced by consider-
ing anisotropic exponential decay and by considering a better
parameter fitting.

5. Discussion

In the absence of an explicit task, we have shown that the joint
distribution of saccade amplitudes and orientations is not only
biased by the scene category but is also spatially-variant. These
two findings may significantly influence the design of future sal-
iency models which should combine low-level visual features, con-
textual information and viewing biases.

Although we are at the incipient stage of this new era, it is
worth noticing that some saliency or saccadic models already
embed viewing biases to predict where human observers fixate.
The most used is the central bias which favors the center of the
image compared to its borders. This bias is currently introduced
in computational modeling through ad hoc methods. In Le Meur
et al. (2006); Marat et al., 2013, the saliency map is simply multi-
plied by a 2D anisotropic Gaussian function. Note that the standard
deviations of the Gaussian function can be learned from a training
set of images to boost the performance, as recommended by
Bylinskii et al. (2015). Bruce’s model (Bruce and Tsotsos, 2009)
favors the center by removing the image’s borders whereas Harel’s
model (Harel et al., 2006) do so thanks to its graph-based architec-
ture. Saccade distributions are used by saccadic models (Tavakoli
et al., 2013; Boccignone and Ferraro, 2011) and allow to improve
the prediction of salient areas (Le Meur and Liu, 2015). Tatler
and Vincent (2009) went even further and considered the viewing
biases alone. Without any visual input from the processed scene,
they proposed a model outperforming state-of-the-art low-level
saliency models.
However, these approaches suffer from the fact that they
consider saccade distributions as being systematic and spatially-
invariant. In this study, we show that considering the context-
dependent nature of saccade distributions allow to further improve
saccadic models. This is consistent with the recent findings pre-
sented in O’Connell and Walther (2015). Indeed, this study shows
that scene category directly influences spatial attention. Going fur-
ther, we also demonstrate that saccade distributions are spatially-
variant within the scene frame. By considering category-specific
and spatially-variant viewing biases, we demonstrate, in the same
vein as Tatler and Vincent (2009), that these viewing biases alone
outperform several well-established computational models. This
model, aware of the scene category but blind to the visual informa-
tion of the image being processed, is able to reproduce, for instance,
the center bias. The latter is simply a consequence of the saccadedis-
tributions of the base frames located on the image border. As previ-
ously mentioned, these base frames are mainly composed of
saccades pointing towards the image’s center.

Visual attention deployment is influenced, but up to a limited
extent, by low-level visual factors. Nyström and Holmqvist
(2008) demonstrated that high-level factors can override low-
level factors, even in a context of free-viewing. Einhäuser et al.
(2008) demonstrated that semantic information, such as objects,
predict fixation locations better than low-level visual features.
Coutrot and Guyader (2014b) showed that, while watching
dynamic conversions, conversation partners’ faces clearly take
the precedence over low-level static or dynamic features to explain
observers’ eye positions. We also demonstrate that a straightfor-
ward combination of bottom-up visual features and viewing biases
allows to further improve the prediction of salient areas.

From these findings, a new saliency framework binding fast
scene recognition with category-specific spatially-variant viewing
biases and low-level visual features could be defined.

We believe that there is a potential to go further in the estima-
tion and description of viewing biases. First, we assumed that sac-
cades are independent events and are processed separately. This
assumption is questionable. Tatler and Vincent (2008) showed
for instance that saccades with small amplitude tend to be pre-
ceded by other small saccades. Regarding saccade orientation, they
noticed a bias to make saccades either in the same direction as the
previous saccade, or in the opposite direction. Compared to the
first-order analysis we perform in this study, it would make sense
to consider second-order effects to get a better viewing biases
description. In addition, as underlined by Tatler and Vincent
(2009), a more comprehensive description could take into account
saccade velocity, as well as the recent history of fixation points.

One important characteristic of visual scanpaths, but currently
missing in the proposed model, is fixation duration. Trukenbrod
and Engbert (2014) recently proposed a new model to predict
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the duration of a visual fixation. The prediction is based on the
mixed control theory encompassing the processing difficulty of a
foveated item and the history of previous fixations. Integrating
(Trukenbrod and Engbert, 2014)’s model into our saccadic model
would improve the plausibility of the proposed model. Moreover,
estimating fixation durations will open new avenues in the compu-
tational modeling of visual scanpaths, such as the modeling of
microsaccades occurring during fixation periods (Martinez-Conde
et al., 2013).

From a more practical point of view, one could raise concerns
about the number and the spatial layout of base frames. In this
study, we give compelling evidence that saliency maps based on
viewing biases are much better when nine base frames are used,
i.e. N ¼ 3. Increasing the number of base frames would most likely
improve the prediction of salient areas. However, a fine-grained
grid would pose the problem of statistical representativeness of
the estimated distributions. Regarding the base frame layout, one
may wonder whether we should use evenly distributed base
frames or not and whether base frames should overlap or not.

Eye movement parameters are not only spatially variant and
scene category specific, but some very recent work showed that
they also differ at an individual level. Individual traits such as gen-
der, personality, identity and emotional state could be inferred
from eye movements (Borji et al., 2015; Chuk et al., 2014;
Greene et al., 2012; Kanan et al., 2015; Moss et al., 2012;
Nummenmaa et al., 2009). For instance, Mehoudar et al. (2014)
showed that humans have idiosyncratic scanpaths while exploring
faces, and that these scanning patterns are highly stable across
time. Such stable and unique scanning patterns may represent a
specific behavioral signature. This suggests that viewing biases
could be estimated at an individual level. One could imagine train-
ing a model with the eye movements of a given person, and tune a
saccadic model according to its specific gaze profile. This approach
could lead to a new generation of saliency-based application, such
as user-specific video compression algorithm.

6. Conclusion

Viewing biases are not so systematic. When freely viewing com-
plex images, the joint distribution of saccade amplitudes and ori-
entations turns out to be spatially-variant and dependent on
scene category. We have shown that saliency maps solely based
on viewing biases, i.e. blind to any visual information, outperform
well-established saliency models. Going even further we show that
the use of bottom-up saliency map and viewing biases improves
saliency model performance. Moreover, the sequences of fixation
produced by our saccadic model get closer to human gaze
behavior.

Our contributions enable researchers to make a few more steps
toward the understanding of the complexity and the modeling of
our visual system. In a recent paper, Bruce et al. (2015) present a
high-level examination of persisting challenges in computational
modeling of visual saliency. They dress a list of obstacles that
remain in visual saliency modeling, and discuss the biological plau-
sibility of models. Saccadic models provide an efficient framework
to cope with many challenges raised in this review, such as spatial
bias, context and scene composition, as well as oculomotor
constraints.
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