
	 1	

EMHMM-Toolbox:	Eye-Movement	analysis	with	Hidden	Markov	
Models	(HMMs)	

	
Antoni	B.	Chan,	City	University	of	Hong	Kong	

Janet	H.	Hsiao,	University	of	Hong	Kong	
Tim	Chuk,	University	of	Hong	Kong	

	
Copyright	(c)	2017,	City	University	of	Hong	Kong	&	University	of	Hong	Kong	

2017-Jan-21,	v0.5	
	
	 	DESCRIPTION		 	
This	is	a	MATLAB	toolbox	for	analyzing	eye	movement	data	with	hidden	Markov	Models	
(HMMs).		The	major	functions	of	the	toolbox	are:	
		1)	Estimating	HMMs	for	an	individual's	eye-gaze	data.	
		2)	Clustering	individuals'	HMMs	to	find	common	strategies.	
		3)	Visualizing	HMMs	and	fixation	data.	
		4)	Statistical	tests	to	see	if	two	HMMs	are	different.	
You	can	find	more	information	about	the	methodology	in	the	below	reference	papers.	
	
	 	REFERENCES		 	
If	you	use	this	toolbox,	please	cite	the	following	papers:	

• For	learning	HMMs	for	eye	gaze	data:	Tim	Chuk,	Antoni	B.	Chan,	and	Janet	H.	Hsiao,	
"Understanding	eye	movements	in	face	recognition	using	hidden	Markov	models",	
Journal	of	Vision,	14(11):8,	Sep	2014.	

• For	clustering	HMMs	with	the	VHEM	algorithm:	Emanuele	Coviello,	Antoni	B.	Chan,	
and	Gert	R.G.	Lanckriet.	"Clustering	hidden	Markov	models	with	variational	HEM".	
Journal	of	Machine	Learning	Research,	15(2):697-747,	Feb	2014.	

	
	 	CONTACT	INFO		 	
Send	comments,	bug	reports,	feature	requests	to	Antoni	Chan	(abchan@cityu.edu.hk).	
	
	 	DEMO		 	
In	this	section,	we	will	go	through	one	of	the	demo	programs	to	show	the	functions	of	the	
toolbox.	In	MATLAB,	change	to	the	main	directory	of	the	toolbox	and	run	the	following	to	
setup	the	paths.	

	
	
Now	change	to	the	“demo”	folder,	run	"demo_faces"	to	run	a	demo	script.	

	
	
This	script	will	first	load	the	fixation	data	from	an	Excel	spreadsheet,	demodata.xls.	The	
spreadsheet	has	4	columns:	SubjectID,	TrialID,	FixX,	and	FixY,	which	correspond	to	the	
subject	ID,	trial	number	(ID),	and	X	and	Y	fixation	locations.		The	fixation	data	is	

>> setup

>> cd demo
>> demo_faces

	 2	

automatically	separated	according	to	the	subject	ID	and	trial	number.	In	each	trial,	it	
assumes	that	the	fixations	occur	in	order.		The	output	will	look	like	this:	

	
The	program	found	10	subjects	with	56	trials	each.	
	
Next,	an	individual	HMM	will	be	estimated	from	each	subject’s	fixation	data.		We	use	the	
variational	Bayesian	EM	algorithm	to	estimate	the	HMMs.	It	can	automatically	select	the	
number	of	ROIs.		In	this	case,	we	try	K=2	and	K=3	ROIs.	For	each	K,	the	VB	algorithm	is	run	
50	times	with	random	initializations,	and	the	run	with	the	highest	log-likelihood	is	kept.		The	
best	model	over	all	the	candidate	Ks	will	be	selected.	The	output	for	one	subject	looks	like	
this:	

	
	
To	visualize	an	HMM	and	the	data,	we	use	the	following	2	commands:

	
	
The	first	command	looks	at	the	HMM	of	the	first	subject.	"faceimg”	contains	the	name	of	
the	image	file	of	the	face	to	put	in	the	background.		The	figure	from	vbhmm_plot	looks	
like	this	(Figure	1	from	the	demo):	

Reading demodata.xls
- found SubjectID in column 1
- found TrialID in column 2
- found FixX in column 3
- found FixY in column 4
- found 10 subjects:
1 2 3 4 5 6 7 8 9 10
 * subject 1 had 56 trials
 * subject 2 had 56 trials
 * subject 3 had 56 trials
 * subject 4 had 56 trials
 * subject 5 had 56 trials
 * subject 6 had 56 trials
 * subject 7 had 56 trials
 * subject 8 had 56 trials
 * subject 9 had 56 trials
 * subject 10 had 56 trials

=== running Subject 1 ===
-- vbhmm K=2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50
best run=20; LL=-2031.89
-- vbhmm K=3: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50
best run=40; LL=-2022.05
best model: K=3; L=-2020.25

>> vbhmm_plot(hmms{1}, data{1}, faceimg)
>> figure, vbhmm_plot_compact(hmms{1}, faceimg)

	 3	

	
The	top-left	plot	shows	the	fixation	sequences,	and	the	“x”	is	the	first	fixation.	The	top-
middle	plot	shows	the	emission	densities	(ROIs)	and	the	corresponding	fixations.		The	top-
right	plot	shows	the	total	number	of	fixations	in	each	ROI.		On	the	bottom,	the	left	and	
middle	plots	show	the	transition	counts	and	transition	matrix.		In	the	transition	matrix	
(bottom-middle),	each	row	is	a	probability	distribution.	I.e.,	each	row	is	normalized	to	sum	
to	1.		Finally,	the	bottom-right	shows	the	prior	probability,	i.e.,	the	probability	of	the	ROI	of	
the	first	fixation.		The	ROIs	are	automatically	sorted	according	to	the	most	likely	fixation	
path:	ROI	1	is	the	most	probable	initial	fixation;	ROI	2	is	the	most	likely	next	fixation,	given	a	
fixation	in	ROI	1;	etc.		In	this	example,	the	subject	has	50%	probability	to	look	at	ROI	1	(red	
region).	Then	has	a	73%	of	transitioning	to	the	green	ROI	2.	In	the	green	ROI	2,	the	subject	
will	look	back	at	ROI	1	(88%	probability).		So	the	subject	tends	to	look	back	and	forth	
between	the	eyes.		In	40%	of	the	cases,	the	subject	will	first	look	in	the	middle	of	the	face	at	
ROI	3,	and	then	transition	to	the	red	ROI	1.	
	
The	second	command	makes	a	compact	plot	of	the	HMM	and	doesn’t	show	the	data.	The	
figure	looks	like	this	(Figure	2	from	the	demo):	

	
On	the	left	side	are	the	ROIs	(labeled	with	colors	and	numbers).	The	right-top	shows	the	
prior	probabilities,	and	the	right-bottom	shows	the	transition	matrix.	The	rows/columns	are	
labeled	with	colors	and	numbers	to	indicate	the	corresponding	ROIs.	
	
The	demo	script	plots	all	the	subjects	in	one	figure	(Figure	3	from	the	demo):	

	 4	

	
	
Given	the	10	individuals’	HMMs,	the	demo	script	then	computes	the	overall	eye	gaze	
pattern	by	clustering	the	individuals	into	one	group.	Here	the	variational	HEM	algorithm	is	
used	to	cluster	the	HMMs.	The	algorithm	is	run	50	times	with	random	initializations,	and	the	
run	with	the	highest	log-likelihood	is	kept.	The	output	of	the	demo	script	looks	like	this:	

	
	
The	corresponding	plot	of	the	group	HMM	is	here	(Figure	4	from	the	demo):	

	
For	the	overall	HMM	for	all	subjects,	two	of	the	ROIs	are	large	and	cover	most	of	the	face	
features.	This	is	mainly	because	there	are	different	strategies	used	by	each	subject,	and	
merging	them	all	together	yields	a	“washed	out”	HMM,	which	lacks	specific	details.	One	
interesting	thing	is	that	the	right	eye	has	its	own	ROI	(green	ROI	2)	and	the	transition	matrix	
shows	very	high	probability	of	moving	from	ROI	2	to	ROI	3.	This	indicates	that	a	common	
strategy	of	subjects	looking	at	the	right	eye	consistently,	and	then	look	around	the	center	of	
the	face.	

=== Clustering (1 group) ===
VHEM Trial: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50
Best run is 39: LL=-1011.22

	 5	

	
To	discover	the	different	strategies	among	the	subjects,	next	the	demo	script	clusters	the	
individual	HMMs	into	2	groups	using	VHEM.	Here	is	the	output:	

	
Here	is	the	plot	of	the	two	group	HMMs	(Figure	5	from	the	demo):	

	
After	clustering	into	two	groups,	we	see	two	separate	strategies.	For	Group	1	(left),	they	
tend	to	first	look	around	the	center	of	the	face	(nose),	and	then	the	right	eye.		For	Group	2	
(right),	they	tend	to	look	at	the	two	eyes	(ROI	2),	and	the	mouth	(ROI3).	
	
Finally,	we	test	whether	the	two	group	HMMs	are	different.		We	take	the	data	for	subjects	
in	Group	1,	and	calculate	the	log-likelihood	of	this	data	under	the	Group	1	HMM	and	under	
the	Group	2	HMM.		The	average	difference	between	the	log-likelihoods	is	an	estimate	of	the	
Kullback-Leibler	(KL)	divergence,	which	is	a	dissimilarity	measure	for	probability	
distributions.	A	KL	divergence	of	0	means	that	the	two	distributions	(HMMs)	are	the	same.		
We	run	a	paired	t-test	on	the	two	lists	of	log-likelihoods	to	see	if	the	average	log-likelihood	
difference	is	significantly	different	from	0.		Since	KL	divergence	is	not	symmetric,	we	need	to	
do	this	twice:	once	using	the	data	from	Group	1,	and	once	using	the	data	from	Group	2.	The	
test	results	are	below:	

	
In	both	cases,	the	two	HMMs	are	significantly	different	(p=0.0016	and	p=0.008).	
	
The	toolbox	can	also	learn	HMMs	for	eye	fixation	data	consisting	of	both	fixation	location	
(x,y)	and	duration	(time	in	milliseconds).	An	example	can	be	found	in	the	
“demo_faces_duration.m”	script.	The	script	loads	the	data	from	“jov_duration.xls”.	The	
Excel	spreadsheet	now	has	a	5th	column	with	the	header	“FixD”,	which	is	for	the	fixation	
duration.		The	commands	used	to	learn	a	subject’s	HMM	and	group	HMMs	are	the	same.		
Here	is	an	example	of	one	subject’s	HMM	using	fixation	location	and	duration:	

=== Clustering (2 groups) ===
VHEM Trial: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47 48 49 50
Best run is 37: LL=-1005.72

...
Group membership:
 group 1 = [1 3 6 8 9]
 group 2 = [2 4 5 7 10]

test group hmm1 different from group hmm2: t(4)=6.28769; p=0.00163401
test group hmm2 different from group hmm1: t(4)=4.00247; p=0.0080485

	 6	

	
The	3rd	plot	shows	the	distribution	of	fixation	duration	for	each	ROI.	For	this	subject,	they	
tend	to	have	a	quick	fixation	on	the	face,	and	then	sometimes	fixate	longer	on	the	nose.		
The	fixation	duration	data	is	shown	at	the	bottom	of	the	ROI	duration	plots.	Note	that	the	x-
axis	values	are	the	durations,	and	the	y-values	are	randomly	selected	to	better	visualize	the	
data.	
	
Here	is	a	compact	plot	of	the	same	HMM:	

	
	
More	details	can	be	found	in	the	demo	script	“demo_faces_duration.m”.	
	
That’s	all!	There	are	more	demos	for	clustering	and	comparing	HMMs	in	the	demo	scripts		
"demo_faces_jov_clustering.m"	and	"demo_faces_jov_compare.m".	
	
	 	FUNCTION	USAGE		 	
In	this	section,	we	provide	more	details	about	the	main	function	calls	and	their	input	
parameters.		More	detailed	help	can	be	found	in	MATLAB	for	each	function	by	using	the	
help	command	on	the	function	(e.g.,	help vbhmm_learn).	
	
Options	are	passed	to	the	main	functions,	vbhmm_learn	and	vhem_cluster,	using	a	
structure	where	each	field	represents	one	parameter	setting.	Values	are	not	specified	in	the	
structure	will	be	automatically	filled-in	using	default	values.	

	 7	

	
vbhmm_learn	-	estimate	an	HMM	from	eye	fixation	data	
	
Usage:	

[hmm,L] = vbhmm_learn(data,K,vbopt)
	
INPUTS	 Description	
data Nx1	cell	array,	where	each	element	is	a	fixation	sequence	and	N	

is	the	number	of	sequences.	
data{i}	is	a	TxD	matrix,	where	T	is	the	sequence	length,	and	D	is	
the	dimension	of	a	single	fixation	point	(typically	2	for	x	and	y	
coordinates).	

K The	number	of	hidden	states	(ROIs)	to	use.	If	given	a	vector,	the	K	
will	be	automatically	selected	among	the	entries	in	the	vector.		

vbopt structure	containing	options	(see	below)	
vbopt.alpha The	Dirichlet	distribution	concentration	parameter	for	the	prior	

distribution	of	the	initial	fixation.		Large	values	encourage	a	
uniform	prior,	while	small	values	encourage	a	concentrated	prior	
(default=0.1).	It	should	be	a	positive	number.	
	 Another	way	to	think	of	it	is	in	terms	of	"virtual"	samples.	
A	typical	way	to	estimate	the	probability	of	something	is	to	count	
the	number	of	samples	that	it	occurs	and	then	divide	by	the	total	
number	of	samples,	i.e.	P	=	(#	times	it	occurred)	/	(#	samples).			
The	alpha	parameter	of	the	Dirichlet	adds	a	“virtual”	sample	to	
this	estimate,	so	that	the	probability	estimated	is	P	=	(#	times	it	
occurred	+	alpha)	/	(#	samples).		Hence,	for	small	alpha,	the	
probability	estimate	will	just	follow	the	data,	while	for	large	
alpha,	it	forces	all	the	probabilities	to	be	very	similar	(i.e.,	
uniform).	

vbopt.epsilon The	concentration	parameter	for	the	Dirichlet	distribution	on	the	
rows	of	the	transition	matrix	(default=0.1).		The	meaning	is	
similar	to	alpha	above,	but	for	the	probabilities	in	the	transition	
matrix.	

vbopt.mu prior	mean	of	the	ROIs	(default	=	[256;192]).	Typically,	it	should	
be	at	the	center	of	the	image.		Alternatively,	you	can	use	the	
average	fixation	location.	
When	fixation	duration	is	included	in	the	data,	then	the	default	is	
[256;192;250].	

vbopt.W Inverse	variance	of	the	inverse	Wishart	distribution	
(default=0.005).	This	parameter	determines	the	variance	(width)	
of	the	ROI	prior.		For	example,	W=0.005	means	that	the	variance	
of	the	ROI	prior	is	1/0.005=200.	Hence,	the	ROI	prior	has	a	
standard	deviation	of	14	pixels,	i.e.,	the	ROI	ellipses	have	width	of	
14*4	=	56	pixels.	
A	vector	can	be	specified,	in	which	case	the	(x,y,d)	widths	of	the	
ROIs	can	be	different.	

	 8	

vbopt.v The	degree-of-freedom	of	the	inverse	Wishart,	v	>	D-1.	
(default=10).	Larger	values	give	preference	to	diagonal	
covariance	matrices.	

vbopt.beta The	Wishart	concentration	parameter	(default=1).	Large	values	
encourage	estimated	ROIs	to	be	similar	to	the	prior	ROI	(mean	&	
W),	while	small	value	ignores	the	prior.	

vbopt.numtrials The	number	of	trails	to	run	when	using	'random'	initialization	
(default=50).	

vbopt.showplot 1	means	show	a	plot	of	the	HMM	(default).	
0	means	don’t	show	a	plot.	

vbopt.verbose 0	means	don’t	show	any	messages.	
1	means	show	a	few	messages	showing	progress.	(default)	
2	means	show	lots	of	messages.	

	
	OUTPUTS	 Description	
hmm Structure	containing	all	the	HMM	parameters	and	other	

information.	Use	“help	vbhmm_learn”	for	more	details.	
L The	log-likelihood	of	the	data	for	the	hmm.		
	
vbhmm_auto_hyperparam	–	automatically	select	some	hyperparameters	for	
vbhmm_learn	
	
This	is	a	helpful	function	to	automatically	set	the	hyperparameters	mu	and	W	for	
vbhmm_learn.			
	
Usage:	
 [vbopt] = vbhmm_auto_hyperparam(vbopt, data, img, opt)
	
INPUTS	 Description	
vbopt Existing	vbopt	structure	
data the	same	format	as	vbhmm_learn.	Or	a	cell	array	of	subjects’	

data:	data{s}{i}	=	the	i-th	trial	for	the	s-th	subject.	
img the	template	image	(or	filename)	
opt Option	settings;	

‘c’	=	set	mu	as	the	center	of	the	image,	and	W	so	that	the	prior	
ROI	is	1/8	the	width	of	the	image.		For	duration,	set	the	mean	as	
250ms	and	standard	deviation	as	25ms.	
	
‘d’	=	use	a	data-driven	approach.	Set	the	mu	as	the	mean	fixation	
location	and	duration.	Set	W	according	to	the	inverse	variance	of	
the	data.	Assumes	that	the	ROI	is	circular	in	x-y	dimensions.	

	
	OUTPUTS	 Description	
vbopt New	options	structure	with	mu	and	W	set.	
	
	

	 9	

vhem_cluster	–	cluster	HMMs	into	groups	using	VHEM	
	
Usage:	
 [group_hmms] = vhem_cluster(hmms, K, S, hemopt)
	
INPUTS	 Description	
hmms Nx1	cell	array	of	HMMs,	each	learned	with	vbhmm_learn.	
K The	number	of	groups	to	cluster	the	data		
S The	number	of	states	(ROIs)	in	each	group	HMM.		Use	[]	to	

automatically	select	the	number	of	states	as	the	median	number	
of	states	in	the	input	HMMs.	

hemopt structure	containing	options	(see	below)	
hemopt.trials number	of	trials	with	random	initialization	to	run	(default=50)	
hemopt.verbose 0	means	don’t	show	any	messages.	

1	means	show	a	few	messages	showing	progress	(default)	
2	means	show	lots	of	messages.	

	
	OUTPUTS	 Description	
group_hmms A	structure	containing	the	group	HMMs	and	other	information.			

Use	“help	vhem_cluster”	for	more	details.	
group_hmms.hmms A	1xK	cell	array,	where	each	entry	is	a	group	representative	

HMM.		
group_hmm.LogL The	log-likelihood	score	of	the	group	HMMs.	
group_hmm.label A	1xN	vector,	where	each	entry	is	the	cluster	assignment	for	the	

i-th	input	HMM.	
group_hmm.groups A	1xK	cell	array,	where	each	entry	contains	the	group	members	

for	that	group.	
	
	 	TOOLBOX	CONTENTS		 	
The	contents	of	the	emhmm	toolbox	are	listed	below.		Here	only	the	important	functions	
for	the	user	are	highlighted.	
	
Directory/Filename	 Description	
emhmm_version.m Toolbox	version	number	and	history	
setup.m Setup	MATLAB	path	for	the	toolbox	
demo/ 	
 demo_faces.m Simple	example	for	learning	individual	HMMs	and	clustering	HMMs.	
 demo_faces_duration.m Simple	example	using	fixation	location	and	duration.	
 demo_faces_jov_clustering.m Another	example	of	learning	and	clustering	HMMs.	
 demo_faces_jov_compare.m Example	of	comparing	HMMs	learned	from	correct	and	incorrect	face	

recognition	trials.	
src/hem 	
 vhem_cluster.m Cluster	HMMs	with	VHEM	algorithm	
 vhem_plot.m Visualize	the	group	HMMs	
 vhem_plot_clusters.m Visualize	the	group	HMMs	and	cluster	members	
src/hmm 	
 vbhmm_learn.m Learn	HMM	from	data	
 vbhmm_plot_compact.m Visualize	an	HMM	using	a	compact	format	
 vbhmm_plot.m Visualize	an	HMM	
 vbhmm_kld.m Calculate	the	KL	divergence	between	2	HMMs	

	 10	

 vbhmm_ll.m Calculate	the	log-likelihood	of	data	for	an	HMM	
 vbhmm_auto_hyperparam.m Automatically	select	some	hyperparameters	
src/stats 	
 stats_ttest.m Run	a	t-test	to	compare	log-likelihoods	of	two	HMMs.	
src/util 	
 read_xls_fixations.m Read	fixations	from	an	Excel	spreadsheet	in	standard	format.	

	

